BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37913825)

  • 1. The impact of ORF19.36.1 in the pathobiology of Candida albicans.
    Arita GS; Ma Q; Leaves I; Pradhan A; Hickey E; Dambuza I; Bebes A; Vincenzi Conrado PC; Barros Galinari C; Vicente Seixas FA; Kioshima ÉS; de Souza Bonfim-Mendonça P; Svidzinski TIE; Brown AJP
    Microb Pathog; 2023 Dec; 185():106437. PubMed ID: 37913825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo systematic analysis of Candida albicans Zn2-Cys6 transcription factors mutants for mice organ colonization.
    Vandeputte P; Ischer F; Sanglard D; Coste AT
    PLoS One; 2011; 6(10):e26962. PubMed ID: 22073120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of ORF19.1725, a novel gene contributing to the white cell pheromone response and virulence-associated functions in Candida albicans.
    Deng FS; Lin CH
    Virulence; 2018 Dec; 9(1):866-878. PubMed ID: 29726301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requirement for Candida albicans Sun41 in biofilm formation and virulence.
    Norice CT; Smith FJ; Solis N; Filler SG; Mitchell AP
    Eukaryot Cell; 2007 Nov; 6(11):2046-55. PubMed ID: 17873081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation.
    Song Y; Li S; Zhao Y; Zhang Y; Lv Y; Jiang Y; Wang Y; Li D; Zhang H
    Int J Med Microbiol; 2019 Sep; 309(6):151330. PubMed ID: 31471070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcript profiling of Candida albicans and Candida dubliniensis identifies SFL2, a C. albicans gene required for virulence in a reconstituted epithelial infection model.
    Spiering MJ; Moran GP; Chauvel M; Maccallum DM; Higgins J; Hokamp K; Yeomans T; d'Enfert C; Coleman DC; Sullivan DJ
    Eukaryot Cell; 2010 Feb; 9(2):251-65. PubMed ID: 20023067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic zinc compartmentalisation in a human fungal pathogen.
    Crawford AC; Lehtovirta-Morley LE; Alamir O; Niemiec MJ; Alawfi B; Alsarraf M; Skrahina V; Costa ACBP; Anderson A; Yellagunda S; Ballou ER; Hube B; Urban CF; Wilson D
    PLoS Pathog; 2018 May; 14(5):e1007013. PubMed ID: 29727465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida albicans
    Rollenhagen C; Agyeman H; Eszterhas S; Lee SA
    mSphere; 2021 Oct; 6(5):e0070721. PubMed ID: 34585966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct roles of Candida albicans-specific genes in host-pathogen interactions.
    Wilson D; Mayer FL; Miramón P; Citiulo F; Slesiona S; Jacobsen ID; Hube B
    Eukaryot Cell; 2014 Aug; 13(8):977-89. PubMed ID: 24610660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic Complex Haploinsufficiency-Based Genetic Analysis of
    Glazier VE; Murante T; Koselny K; Murante D; Esqueda M; Wall GA; Wellington M; Hung CY; Kumar A; Krysan DJ
    G3 (Bethesda); 2018 Mar; 8(4):1299-1314. PubMed ID: 29472308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The GRF10 homeobox gene regulates filamentous growth in the human fungal pathogen Candida albicans.
    Ghosh AK; Wangsanut T; Fonzi WA; Rolfes RJ
    FEMS Yeast Res; 2015 Dec; 15(8):. PubMed ID: 26472755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A family of secreted pathogenesis-related proteins in Candida albicans.
    Röhm M; Lindemann E; Hiller E; Ermert D; Lemuth K; Trkulja D; Sogukpinar O; Brunner H; Rupp S; Urban CF; Sohn K
    Mol Microbiol; 2013 Jan; 87(1):132-51. PubMed ID: 23136884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of serial systemic infection on
    Arita GS; Faria DR; Sakita KM; Rodrigues-Vendramini FA; Capoci IR; Kioshima ES; Bonfim-Mendonça PS; Svidzinski TI
    Future Microbiol; 2020 Sep; 15():1249-1263. PubMed ID: 33026881
    [No Abstract]   [Full Text] [Related]  

  • 14. A C. albicans TRAPP Complex-Associated Gene Contributes to Cell Wall Integrity, Hyphal and Biofilm Formation, and Tissue Invasion.
    Ma D; Yu M; Eszterhas S; Rollenhagen C; Lee SA
    Microbiol Spectr; 2023 Jun; 11(3):e0536122. PubMed ID: 37222596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidation of potentially virulent factors of Candida albicans during serum adaptation by using quantitative time-course proteomics.
    Aoki W; Tatsukami Y; Kitahara N; Matsui K; Morisaka H; Kuroda K; Ueda M
    J Proteomics; 2013 Oct; 91():417-29. PubMed ID: 23948566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Anti-Virulence Approaches for Candidiasis via a Novel Series of Small-Molecule Inhibitors of
    Romo JA; Pierce CG; Chaturvedi AK; Lazzell AL; McHardy SF; Saville SP; Lopez-Ribot JL
    mBio; 2017 Dec; 8(6):. PubMed ID: 29208749
    [No Abstract]   [Full Text] [Related]  

  • 17. Serial Systemic
    Arita GS; Meneguello JE; Sakita KM; Faria DR; Pilau EJ; Ghiraldi-Lopes LD; Campanerut-Sá PAZ; Kioshima ÉS; Bonfim-Mendonça PS; Svidzinski TIE
    Front Cell Infect Microbiol; 2019; 9():230. PubMed ID: 31293987
    [No Abstract]   [Full Text] [Related]  

  • 18. Investigating Common Pathogenic Mechanisms between
    Yeh SJ; Yeh CC; Lan CY; Chen BS
    Toxins (Basel); 2019 Feb; 11(2):. PubMed ID: 30769958
    [No Abstract]   [Full Text] [Related]  

  • 19. Loss of Upc2p-Inducible
    Luna-Tapia A; Willems HME; Parker JE; Tournu H; Barker KS; Nishimoto AT; Rogers PD; Kelly SL; Peters BM; Palmer GE
    mBio; 2018 May; 9(3):. PubMed ID: 29789366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravital Imaging of Candida albicans Identifies Differential
    Wakade RS; Huang M; Mitchell AP; Wellington M; Krysan DJ
    mSphere; 2021 Jun; 6(3):e0043621. PubMed ID: 34160243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.