These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 37913890)

  • 1. Nanocarriers transport across the gastrointestinal barriers: The contribution to oral bioavailability via blood circulation and lymphatic pathway.
    Wang D; Jiang Q; Dong Z; Meng T; Hu F; Wang J; Yuan H
    Adv Drug Deliv Rev; 2023 Dec; 203():115130. PubMed ID: 37913890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers.
    Wang Y; Zhao Y; Cui Y; Zhao Q; Zhang Q; Musetti S; Kinghorn KA; Wang S
    Acta Biomater; 2018 Jan; 65():405-416. PubMed ID: 29037897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs.
    Managuli RS; Raut SY; Reddy MS; Mutalik S
    Expert Opin Drug Deliv; 2018 Aug; 15(8):787-804. PubMed ID: 30025212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface design of nanocarriers: Key to more efficient oral drug delivery systems.
    Spleis H; Sandmeier M; Claus V; Bernkop-Schnürch A
    Adv Colloid Interface Sci; 2023 Mar; 313():102848. PubMed ID: 36780780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oral delivery of biomacromolecules by overcoming biological barriers in the gastrointestinal tract: an update.
    Liu S; Wen X; Zhang X; Mao S
    Expert Opin Drug Deliv; 2023; 20(10):1333-1347. PubMed ID: 37439101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocarriers protecting toward an intestinal pre-uptake metabolism.
    Suchaoin W; Bernkop-Schnürch A
    Nanomedicine (Lond); 2017 Feb; 12(3):255-269. PubMed ID: 28093952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability.
    He W; Yang K; Fan L; Lv Y; Jin Z; Zhu S; Qin C; Wang Y; Yin L
    Int J Pharm; 2015 Nov; 495(1):9-18. PubMed ID: 26325310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers.
    Haddadzadegan S; Dorkoosh F; Bernkop-Schnürch A
    Adv Drug Deliv Rev; 2022 Mar; 182():114097. PubMed ID: 34999121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroral targeting of drug micro or nanocarriers to sites beyond the gastrointestinal tract.
    Zhang Z; Qi J; Lu Y; Wu W; Yuan H
    Med Res Rev; 2021 Jul; 41(4):2590-2598. PubMed ID: 33666959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enteral Route Nanomedicine for Cancer Therapy.
    Zhang LZ; Du RJ; Wang D; Qin J; Yu C; Zhang L; Zhu HD
    Int J Nanomedicine; 2024; 19():9889-9919. PubMed ID: 39351000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oral targeted drug delivery to post-gastrointestinal sites.
    Han R; He H; Lu Y; Lu H; Shen S; Wu W
    J Control Release; 2024 Jun; 370():256-276. PubMed ID: 38679163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery.
    Roger E; Lagarce F; Garcion E; Benoit JP
    Nanomedicine (Lond); 2010 Feb; 5(2):287-306. PubMed ID: 20148639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles.
    Yao M; Xiao H; McClements DJ
    Annu Rev Food Sci Technol; 2014; 5():53-81. PubMed ID: 24328432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers.
    Ensign LM; Cone R; Hanes J
    Adv Drug Deliv Rev; 2012 May; 64(6):557-70. PubMed ID: 22212900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs.
    Cai Z; Wang Y; Zhu LJ; Liu ZQ
    Curr Drug Metab; 2010 Feb; 11(2):197-207. PubMed ID: 20384585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid nanoparticles for enhancing oral bioavailability.
    Gangavarapu A; Tapia-Lopez LV; Sarkar B; Pena-Zacarias J; Badruddoza AZM; Nurunnabi M
    Nanoscale; 2024 Oct; 16(39):18319-18338. PubMed ID: 39291697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Enhancing Oral Drug Absorption: Overcoming Physiological and Pharmaceutical Barriers for Improved Bioavailability".
    Maurya R; Vikal A; Patel P; Narang RK; Kurmi BD
    AAPS PharmSciTech; 2024 Oct; 25(7):228. PubMed ID: 39354282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current approaches in lipid-based nanocarriers for oral drug delivery.
    Plaza-Oliver M; Santander-Ortega MJ; Lozano MV
    Drug Deliv Transl Res; 2021 Apr; 11(2):471-497. PubMed ID: 33528830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective.
    Ejazi SA; Louisthelmy R; Maisel K
    ACS Nano; 2023 Jul; 17(14):13044-13061. PubMed ID: 37410891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current applications of solid lipid nanoparticles and nanostructured lipid carriers as vehicles in oral delivery systems for antioxidant nutraceuticals: A review.
    Gunawan M; Boonkanokwong V
    Colloids Surf B Biointerfaces; 2024 Jan; 233():113608. PubMed ID: 37925866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.