These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37914447)

  • 21. Transcription inhibition using oligonucleotide-modified gold nanoparticles.
    Agbasi-Porter C; Ryman-Rasmussen J; Franzen S; Feldheim D
    Bioconjug Chem; 2006; 17(5):1178-83. PubMed ID: 16984126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mutant T7 RNA polymerase that is defective in RNA binding and blocked in the early stages of transcription.
    He B; Rong M; Durbin RK; McAllister WT
    J Mol Biol; 1997 Jan; 265(3):275-88. PubMed ID: 9018042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple roles for the T7 promoter nontemplate strand during transcription initiation and polymerase release.
    Guo Q; Sousa R
    J Biol Chem; 2005 Feb; 280(5):3474-82. PubMed ID: 15561715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A specific, promoter-independent activity of T7 RNA polymerase suggests a general model for DNA/RNA editing in single subunit RNA Polymerases.
    Sarcar SN; Miller DL
    Sci Rep; 2018 Sep; 8(1):13885. PubMed ID: 30224735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA template-directed RNA synthesis by T7 RNA polymerase.
    Cazenave C; Uhlenbeck OC
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):6972-6. PubMed ID: 7518923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oligonucleotides complementary to a promoter over the region -8...+2 as transcription primers for E. coli RNA polymerase.
    Grachev MA; Zaychikov EF; Ivanova EM; Komarova NI; Kutyavin IV; Sidelnikova NP; Frolova IP
    Nucleic Acids Res; 1984 Nov; 12(22):8509-24. PubMed ID: 6390344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relaxed rotational and scrunching changes in P266L mutant of T7 RNA polymerase reduce short abortive RNAs while delaying transition into elongation.
    Tang GQ; Nandakumar D; Bandwar RP; Lee KS; Roy R; Ha T; Patel SS
    PLoS One; 2014; 9(3):e91859. PubMed ID: 24651161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions of Escherichia coli sigma(70) within the transcription elongation complex.
    Daube SS; von Hippel PH
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8390-5. PubMed ID: 10411885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model for the mechanism of bacteriophage T7 RNAP transcription initiation and termination.
    Sousa R; Patra D; Lafer EM
    J Mol Biol; 1992 Mar; 224(2):319-34. PubMed ID: 1560455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of T7 RNA polymerase transcription by phosphate and phosphorothioate triplex-forming oligonucleotides targeted to a R.Y site downstream from the promoter.
    Alunni-Fabbroni M; Manfioletti G; Manzini G; Xodo LE
    Eur J Biochem; 1994 Dec; 226(3):831-9. PubMed ID: 7813472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding affinity of T7 RNA polymerase to its promoter in the supercoiled and linearized DNA templates.
    Chen YC; Jeng ST
    Biosci Biotechnol Biochem; 2000 Jun; 64(6):1126-32. PubMed ID: 10923780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme.
    Zhang X; Studier FW
    J Mol Biol; 1997 May; 269(1):10-27. PubMed ID: 9192997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exposure of T7 RNA polymerase to the isolated binding region of the promoter allows transcription from a single-stranded template.
    Kukarin A; Rong M; McAllister WT
    J Biol Chem; 2003 Jan; 278(4):2419-24. PubMed ID: 12441338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions of the RNA polymerase of bacteriophage T7 with its promoter during binding and initiation of transcription.
    Ikeda RA; Richardson CC
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3614-8. PubMed ID: 3459146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacteriophage T7 RNA polymerase. 19F-nuclear magnetic resonance observations at 5-fluorouracil-substituted promoter DNA and RNA transcript.
    Rastinejad F; Lu P
    J Mol Biol; 1993 Jul; 232(1):105-22. PubMed ID: 8331654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoregulation of the transcription reaction of T7 RNA polymerase by tethering an azobenzene to the promoter.
    Asanuma H; Tamaru D; Yamazawa A; Liu M; Komiyama M
    Chembiochem; 2002 Aug; 3(8):786-9. PubMed ID: 12203979
    [No Abstract]   [Full Text] [Related]  

  • 37. Promoter-independent synthesis of chemically modified RNA by human DNA polymerase θ variants.
    Tredinnick T; Kent T; Minakhin L; Li Z; Madzo J; Chen XS; Pomerantz RT
    RNA; 2023 Aug; 29(8):1288-1300. PubMed ID: 37105714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of arabinosylcytosine-substituted DNA on DNA/RNA hybrid stability and transcription by T7 RNA polymerase.
    Mikita T; Beardsley GP
    Biochemistry; 1994 Aug; 33(31):9195-208. PubMed ID: 7519442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The intercalating beta-hairpin of T7 RNA polymerase plays a role in promoter DNA melting and in stabilizing the melted DNA for efficient RNA synthesis.
    Stano NM; Patel SS
    J Mol Biol; 2002 Feb; 315(5):1009-25. PubMed ID: 11827472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of T7 RNA polymerase initiation by triple-helical DNA complexes: a model for artificial gene repression.
    Maher LJ
    Biochemistry; 1992 Aug; 31(33):7587-94. PubMed ID: 1510945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.