These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37914627)
21. Dynamic contrast-enhanced MRI radiomics nomogram for predicting axillary lymph node metastasis in breast cancer. Song D; Yang F; Zhang Y; Guo Y; Qu Y; Zhang X; Zhu Y; Cui S Cancer Imaging; 2022 Apr; 22(1):17. PubMed ID: 35379339 [TBL] [Abstract][Full Text] [Related]
22. Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer. Liang R; Li F; Yao J; Tong F; Hua M; Liu J; Shi C; Sui L; Lu H Sci Rep; 2024 Jul; 14(1):16204. PubMed ID: 39003325 [TBL] [Abstract][Full Text] [Related]
23. Delta Radiomics Based on MRI for Predicting Axillary Lymph Node Pathologic Complete Response After Neoadjuvant Chemotherapy in Breast Cancer Patients. Mao N; Bao Y; Dong C; Zhou H; Zhang H; Ma H; Wang Q; Xie H; Qu N; Wang P; Lin F; Lu J Acad Radiol; 2024 Sep; ():. PubMed ID: 39271381 [TBL] [Abstract][Full Text] [Related]
24. Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study. Gu J; Tong T; He C; Xu M; Yang X; Tian J; Jiang T; Wang K Eur Radiol; 2022 Mar; 32(3):2099-2109. PubMed ID: 34654965 [TBL] [Abstract][Full Text] [Related]
25. Peritumoral edema enhances MRI-based deep learning radiomic model for axillary lymph node metastasis burden prediction in breast cancer. Luo H; Chen Z; Xu H; Ren J; Zhou P Sci Rep; 2024 Aug; 14(1):18900. PubMed ID: 39143315 [TBL] [Abstract][Full Text] [Related]
26. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI. Yang X; Fan X; Lin S; Zhou Y; Liu H; Wang X; Zuo Z; Zeng Y J Magn Reson Imaging; 2024 Jun; 59(6):2238-2249. PubMed ID: 37855421 [TBL] [Abstract][Full Text] [Related]
27. Prediction of the number of metastatic axillary lymph nodes in breast cancer by radiomic signature based on dynamic contrast-enhanced MRI. Li L; Yu T; Sun J; Jiang S; Liu D; Wang X; Zhang J Acta Radiol; 2022 Aug; 63(8):1014-1022. PubMed ID: 34162234 [TBL] [Abstract][Full Text] [Related]
28. Pretreatment ultrasound-based deep learning radiomics model for the early prediction of pathologic response to neoadjuvant chemotherapy in breast cancer. Yu FH; Miao SM; Li CY; Hang J; Deng J; Ye XH; Liu Y Eur Radiol; 2023 Aug; 33(8):5634-5644. PubMed ID: 36976336 [TBL] [Abstract][Full Text] [Related]
29. Prediction of Axillary Lymph Node Metastatic Load of Breast Cancer Based on Ultrasound Deep Learning Radiomics Nomogram. Zhang H; Zhao T; Zhang S; Sun J; Zhang F; Li X; Ni X Technol Cancer Res Treat; 2023; 22():15330338231166218. PubMed ID: 36987661 [No Abstract] [Full Text] [Related]
30. A nomogram based on radiomics signature and deep-learning signature for preoperative prediction of axillary lymph node metastasis in breast cancer. Wang D; Hu Y; Zhan C; Zhang Q; Wu Y; Ai T Front Oncol; 2022; 12():940655. PubMed ID: 36338691 [TBL] [Abstract][Full Text] [Related]
31. Mammography-based radiomics nomogram: a potential biomarker to predict axillary lymph node metastasis in breast cancer. Tan H; Wu Y; Bao F; Zhou J; Wan J; Tian J; Lin Y; Wang M Br J Radiol; 2020 Jul; 93(1111):20191019. PubMed ID: 32401540 [TBL] [Abstract][Full Text] [Related]
32. Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram in early-stage breast cancer. Zhang X; Yang Z; Cui W; Zheng C; Li H; Li Y; Lu L; Mao J; Zeng W; Yang X; Zheng J; Shen J Eur Radiol; 2021 Aug; 31(8):5924-5939. PubMed ID: 33569620 [TBL] [Abstract][Full Text] [Related]
33. Radiomic Signature Based on Dynamic Contrast-Enhanced MRI for Evaluation of Axillary Lymph Node Metastasis in Breast Cancer. Tang Y; Chen L; Qiao Y; Li W; Deng R; Liang M Comput Math Methods Med; 2022; 2022():1507125. PubMed ID: 36035302 [TBL] [Abstract][Full Text] [Related]
34. Multi-input deep learning architecture for predicting breast tumor response to chemotherapy using quantitative MR images. El Adoui M; Drisis S; Benjelloun M Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1491-1500. PubMed ID: 32556920 [TBL] [Abstract][Full Text] [Related]
35. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer. Han L; Zhu Y; Liu Z; Yu T; He C; Jiang W; Kan Y; Dong D; Tian J; Luo Y Eur Radiol; 2019 Jul; 29(7):3820-3829. PubMed ID: 30701328 [TBL] [Abstract][Full Text] [Related]
36. Noninvasive prediction of node-positive breast cancer response to presurgical neoadjuvant chemotherapy therapy based on machine learning of axillary lymph node ultrasound. Zhang H; Cao W; Liu L; Meng Z; Sun N; Meng Y; Fei J J Transl Med; 2023 May; 21(1):337. PubMed ID: 37211604 [TBL] [Abstract][Full Text] [Related]
37. Radiomics Nomogram of DCE-MRI for the Prediction of Axillary Lymph Node Metastasis in Breast Cancer. Mao N; Dai Y; Lin F; Ma H; Duan S; Xie H; Zhao W; Hong N Front Oncol; 2020; 10():541849. PubMed ID: 33381444 [TBL] [Abstract][Full Text] [Related]
38. Diagnostic performance of MRI for assessing axillary lymph node status after neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. Li Z; Ma Q; Gao Y; Qu M; Li J; Lei J Eur Radiol; 2024 Feb; 34(2):930-942. PubMed ID: 37615764 [TBL] [Abstract][Full Text] [Related]
39. The use of longitudinal CT-based radiomics and clinicopathological features predicts the pathological complete response of metastasized axillary lymph nodes in breast cancer. Wang J; Tian C; Zheng BJ; Zhang J; Jiao DC; Qu JR; Liu ZZ BMC Cancer; 2024 May; 24(1):549. PubMed ID: 38693523 [TBL] [Abstract][Full Text] [Related]
40. Machine Learning-Based Radiomics Nomogram With Dynamic Contrast-Enhanced MRI of the Osteosarcoma for Evaluation of Efficacy of Neoadjuvant Chemotherapy. Zhang L; Ge Y; Gao Q; Zhao F; Cheng T; Li H; Xia Y Front Oncol; 2021; 11():758921. PubMed ID: 34868973 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]