These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37914782)

  • 1. Activation of mechanoluminescent nanotransducers by focused ultrasound enables light delivery to deep-seated tissue in vivo.
    Jiang S; Wu X; Yang F; Rommelfanger NJ; Hong G
    Nat Protoc; 2023 Dec; 18(12):3787-3820. PubMed ID: 37914782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound-Induced Cascade Amplification in a Mechanoluminescent Nanotransducer for Enhanced Sono-Optogenetic Deep Brain Stimulation.
    Wang W; Kevin Tang KW; Pyatnitskiy I; Liu X; Shi X; Huo D; Jeong J; Wynn T; Sangani A; Baker A; Hsieh JC; Lozano AR; Artman B; Fenno L; Buch VP; Wang H
    ACS Nano; 2023 Dec; 17(24):24936-24946. PubMed ID: 38096422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics.
    Wu X; Zhu X; Chong P; Liu J; Andre LN; Ong KS; Brinson K; Mahdi AI; Li J; Fenno LE; Wang H; Hong G
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26332-26342. PubMed ID: 31811026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palette of Rechargeable Mechanoluminescent Fluids Produced by a Biomineral-Inspired Suppressed Dissolution Approach.
    Yang F; Wu X; Cui H; Jiang S; Ou Z; Cai S; Hong G
    J Am Chem Soc; 2022 Oct; 144(40):18406-18418. PubMed ID: 36190898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless deep-brain neuromodulation using photovoltaics in the second near-infrared spectrum.
    Cui H; Zhao S; Hong G
    Device; 2023 Oct; 1(4):. PubMed ID: 37990694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principles and applications of sono-optogenetics.
    Yang F; Kim SJ; Wu X; Cui H; Hahn SK; Hong G
    Adv Drug Deliv Rev; 2023 Mar; 194():114711. PubMed ID: 36708773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotransducer-Enabled Deep-Brain Neuromodulation with NIR-II Light.
    Wu X; Yang F; Cai S; Pu K; Hong G
    ACS Nano; 2023 May; 17(9):7941-7952. PubMed ID: 37079455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation.
    Liu X; Qiu F; Hou L; Wang X
    Front Behav Neurosci; 2021; 15():820017. PubMed ID: 35145384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse.
    Wang Y; Chen M; Alifu N; Li S; Qin W; Qin A; Tang BZ; Qian J
    ACS Nano; 2017 Oct; 11(10):10452-10461. PubMed ID: 29016105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upconverting nanoparticle micro-lightbulbs designed for deep tissue optical stimulation and imaging.
    Chamanzar M; Garfield DJ; Iafrati J; Chan EM; Sohal V; Cohen BE; Schuck PJ; Maharbiz MM
    Biomed Opt Express; 2018 Sep; 9(9):4359-4371. PubMed ID: 30615722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis.
    Tyler WJ
    Neuroscientist; 2011 Feb; 17(1):25-36. PubMed ID: 20103504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Manipulating Living Systems by Light].
    Sato M
    Yakugaku Zasshi; 2020; 140(8):993-1000. PubMed ID: 32741873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo demonstrations of Fluorescence by Unbound Excitation from Luminescence (FUEL).
    Dragavon J; Rekiki A; Theodorou I; Samson C; Blazquez S; Rogers KL; Tournebize R; Shorte S
    Methods Mol Biol; 2014; 1098():259-70. PubMed ID: 24166383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics.
    Hong Z; Chen Z; Chen Q; Yang H
    Acc Chem Res; 2023 Jan; 56(1):37-51. PubMed ID: 36533853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1700 nm optical coherence microscopy enables minimally invasive, label-free, in vivo optical biopsy deep in the mouse brain.
    Zhu J; Freitas HR; Maezawa I; Jin LW; Srinivasan VJ
    Light Sci Appl; 2021 Jul; 10(1):145. PubMed ID: 34262015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upconversion rare Earths nanomaterials applied to photodynamic therapy and bioimaging.
    Rezende TKL; Barbosa HP; Dos Santos LF; de O Lima K; Alves de Matos P; Tsubone TM; Gonçalves RR; Ferrari JL
    Front Chem; 2022; 10():1035449. PubMed ID: 36465861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Optogenetics with Stimulus Calibration.
    Coddington LT; Dudman JT
    Methods Mol Biol; 2021; 2188():273-283. PubMed ID: 33119857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive
    Nicolson F; Andreiuk B; Andreou C; Hsu HT; Rudder S; Kircher MF
    Theranostics; 2019; 9(20):5899-5913. PubMed ID: 31534527
    [No Abstract]   [Full Text] [Related]  

  • 19. Near-infrared Deep Brain Stimulation in Living Mice.
    Chen S
    Methods Mol Biol; 2020; 2173():71-82. PubMed ID: 32651910
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.