These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37914782)

  • 21. Surgical implantation of wireless, battery-free optoelectronic epidural implants for optogenetic manipulation of spinal cord circuits in mice.
    Grajales-Reyes JG; Copits BA; Lie F; Yu Y; Avila R; Vogt SK; Huang Y; Banks AR; Rogers JA; Gereau RW; Golden JP
    Nat Protoc; 2021 Jun; 16(6):3072-3088. PubMed ID: 34031611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical Control of Genome Editing by Photoactivatable Cas9.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling optical design parameters for fine stimulation in sciatic nerve of optogenetic mice.
    Fritz N; Gulick D; Bailly M; Blain Christen JM
    Sci Rep; 2021 Nov; 11(1):22588. PubMed ID: 34799602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust and adjustable dynamic scattering compensation for high-precision deep tissue optogenetics.
    Li Z; Zheng Y; Diao X; Li R; Sun N; Xu Y; Li X; Duan S; Gong W; Si K
    Commun Biol; 2023 Jan; 6(1):128. PubMed ID: 36721006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optogenetic regulation of embryo implantation in mice using photoactivatable CRISPR-Cas9.
    Takao T; Sato M; Maruyama T
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28579-28581. PubMed ID: 33139551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering a far-red light-activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors.
    Yu Y; Wu X; Guan N; Shao J; Li H; Chen Y; Ping Y; Li D; Ye H
    Sci Adv; 2020 Jul; 6(28):eabb1777. PubMed ID: 32923591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fiberless Optogenetics.
    Chowdhury S; Yamanaka A
    Adv Exp Med Biol; 2021; 1293():407-416. PubMed ID: 33398829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Precise Ultrasound Neuromodulation in a Deep Brain Region Using Nano Gas Vesicles as Actuators.
    Hou X; Qiu Z; Xian Q; Kala S; Jing J; Wong KF; Zhu J; Guo J; Zhu T; Yang M; Sun L
    Adv Sci (Weinh); 2021 Nov; 8(21):e2101934. PubMed ID: 34546652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient spatially targeted gene editing using a near-infrared activatable protein-conjugated nanoparticle for brain applications.
    Rebelo C; Reis T; Guedes J; Saraiva C; Rodrigues AF; Simões S; Bernardino L; Peça J; Pinho SLC; Ferreira L
    Nat Commun; 2022 Jul; 13(1):4135. PubMed ID: 35840564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasound-Triggered In Situ Photon Emission for Noninvasive Optogenetics.
    Wang W; Wu X; Kevin Tang KW; Pyatnitskiy I; Taniguchi R; Lin P; Zhou R; Capocyan SLC; Hong G; Wang H
    J Am Chem Soc; 2023 Jan; 145(2):1097-1107. PubMed ID: 36606703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics.
    Bedbrook CN; Yang KK; Robinson JE; Mackey ED; Gradinaru V; Arnold FH
    Nat Methods; 2019 Nov; 16(11):1176-1184. PubMed ID: 31611694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Miniature, Fiber-Coupled, Wireless, Deep-Brain Optogenetic Stimulator.
    Lee ST; Williams PA; Braine CE; Lin DT; John SW; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):655-64. PubMed ID: 25608307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics.
    Hong Z; Chen Z; Chen Q; Yang H
    Acc Chem Res; 2023 Jan; 56(1):37-51. PubMed ID: 36533853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peripheral Focused Ultrasound Neuromodulation (pFUS).
    Cotero V; Miwa H; Graf J; Ashe J; Loghin E; Di Carlo D; Puleo C
    J Neurosci Methods; 2020 Jul; 341():108721. PubMed ID: 32387189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation.
    Liu X; Qiu F; Hou L; Wang X
    Front Behav Neurosci; 2021; 15():820017. PubMed ID: 35145384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A doxycycline- and light-inducible Cre recombinase mouse model for optogenetic genome editing.
    Vizoso M; E J Pritchard C; Bombardelli L; van den Broek B; Krimpenfort P; Beijersbergen RL; Jalink K; van Rheenen J
    Nat Commun; 2022 Oct; 13(1):6442. PubMed ID: 36307419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-invasive optogenetics with ultrasound-mediated gene delivery and red-light excitation.
    Pouliopoulos AN; Murillo MF; Noel RL; Batts AJ; Ji R; Kwon N; Yu H; Tong CK; Gelinas JN; Araghy DK; Hussaini SA; Konofagou EE
    Brain Stimul; 2022; 15(4):927-941. PubMed ID: 35718324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.
    Kawano F; Okazaki R; Yazawa M; Sato M
    Nat Chem Biol; 2016 Dec; 12(12):1059-1064. PubMed ID: 27723747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radiation Force as a Physical Mechanism for Ultrasonic Neurostimulation of the
    Menz MD; Ye P; Firouzi K; Nikoozadeh A; Pauly KB; Khuri-Yakub P; Baccus SA
    J Neurosci; 2019 Aug; 39(32):6251-6264. PubMed ID: 31196935
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.