These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Optical Control of Genome Editing by Photoactivatable Cas9. Otabe T; Nihongaki Y; Sato M Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293 [TBL] [Abstract][Full Text] [Related]
23. Modeling optical design parameters for fine stimulation in sciatic nerve of optogenetic mice. Fritz N; Gulick D; Bailly M; Blain Christen JM Sci Rep; 2021 Nov; 11(1):22588. PubMed ID: 34799602 [TBL] [Abstract][Full Text] [Related]
24. Robust and adjustable dynamic scattering compensation for high-precision deep tissue optogenetics. Li Z; Zheng Y; Diao X; Li R; Sun N; Xu Y; Li X; Duan S; Gong W; Si K Commun Biol; 2023 Jan; 6(1):128. PubMed ID: 36721006 [TBL] [Abstract][Full Text] [Related]
25. Optogenetic regulation of embryo implantation in mice using photoactivatable CRISPR-Cas9. Takao T; Sato M; Maruyama T Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28579-28581. PubMed ID: 33139551 [TBL] [Abstract][Full Text] [Related]
26. Engineering a far-red light-activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors. Yu Y; Wu X; Guan N; Shao J; Li H; Chen Y; Ping Y; Li D; Ye H Sci Adv; 2020 Jul; 6(28):eabb1777. PubMed ID: 32923591 [TBL] [Abstract][Full Text] [Related]
27. Fiberless Optogenetics. Chowdhury S; Yamanaka A Adv Exp Med Biol; 2021; 1293():407-416. PubMed ID: 33398829 [TBL] [Abstract][Full Text] [Related]
28. Precise Ultrasound Neuromodulation in a Deep Brain Region Using Nano Gas Vesicles as Actuators. Hou X; Qiu Z; Xian Q; Kala S; Jing J; Wong KF; Zhu J; Guo J; Zhu T; Yang M; Sun L Adv Sci (Weinh); 2021 Nov; 8(21):e2101934. PubMed ID: 34546652 [TBL] [Abstract][Full Text] [Related]
29. Efficient spatially targeted gene editing using a near-infrared activatable protein-conjugated nanoparticle for brain applications. Rebelo C; Reis T; Guedes J; Saraiva C; Rodrigues AF; Simões S; Bernardino L; Peça J; Pinho SLC; Ferreira L Nat Commun; 2022 Jul; 13(1):4135. PubMed ID: 35840564 [TBL] [Abstract][Full Text] [Related]
30. Ultrasound-Triggered In Situ Photon Emission for Noninvasive Optogenetics. Wang W; Wu X; Kevin Tang KW; Pyatnitskiy I; Taniguchi R; Lin P; Zhou R; Capocyan SLC; Hong G; Wang H J Am Chem Soc; 2023 Jan; 145(2):1097-1107. PubMed ID: 36606703 [TBL] [Abstract][Full Text] [Related]
35. Review of Noninvasive or Minimally Invasive Deep Brain Stimulation. Liu X; Qiu F; Hou L; Wang X Front Behav Neurosci; 2021; 15():820017. PubMed ID: 35145384 [TBL] [Abstract][Full Text] [Related]
36. A doxycycline- and light-inducible Cre recombinase mouse model for optogenetic genome editing. Vizoso M; E J Pritchard C; Bombardelli L; van den Broek B; Krimpenfort P; Beijersbergen RL; Jalink K; van Rheenen J Nat Commun; 2022 Oct; 13(1):6442. PubMed ID: 36307419 [TBL] [Abstract][Full Text] [Related]
38. A photoactivatable Cre-loxP recombination system for optogenetic genome engineering. Kawano F; Okazaki R; Yazawa M; Sato M Nat Chem Biol; 2016 Dec; 12(12):1059-1064. PubMed ID: 27723747 [TBL] [Abstract][Full Text] [Related]
39. Radiation Force as a Physical Mechanism for Ultrasonic Neurostimulation of the Menz MD; Ye P; Firouzi K; Nikoozadeh A; Pauly KB; Khuri-Yakub P; Baccus SA J Neurosci; 2019 Aug; 39(32):6251-6264. PubMed ID: 31196935 [TBL] [Abstract][Full Text] [Related]