BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 37914933)

  • 21. Zebrafish cardiac muscle thick filaments: isolation technique and three-dimensional structure.
    González-Solá M; Al-Khayat HA; Behra M; Kensler RW
    Biophys J; 2014 Apr; 106(8):1671-80. PubMed ID: 24739166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Titin and Nebulin in Thick and Thin Filament Length Regulation.
    Tskhovrebova L; Trinick J
    Subcell Biochem; 2017; 82():285-318. PubMed ID: 28101866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thick-filament strain and interfilament spacing in passive muscle: effect of titin-based passive tension.
    Irving T; Wu Y; Bekyarova T; Farman GP; Fukuda N; Granzier H
    Biophys J; 2011 Mar; 100(6):1499-508. PubMed ID: 21402032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Titan but not necessarily a ruler: assessing the role of titin during thick filament patterning and assembly.
    Myhre JL; Pilgrim D
    Anat Rec (Hoboken); 2014 Sep; 297(9):1604-14. PubMed ID: 25125174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarization-resolved microscopy reveals a muscle myosin motor-independent mechanism of molecular actin ordering during sarcomere maturation.
    Loison O; Weitkunat M; Kaya-Çopur A; Nascimento Alves C; Matzat T; Spletter ML; Luschnig S; Brasselet S; Lenne PF; Schnorrer F
    PLoS Biol; 2018 Apr; 16(4):e2004718. PubMed ID: 29702642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity.
    Gregorio CC; Trombitás K; Centner T; Kolmerer B; Stier G; Kunke K; Suzuki K; Obermayr F; Herrmann B; Granzier H; Sorimachi H; Labeit S
    J Cell Biol; 1998 Nov; 143(4):1013-27. PubMed ID: 9817758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure.
    Linke WA; Rudy DE; Centner T; Gautel M; Witt C; Labeit S; Gregorio CC
    J Cell Biol; 1999 Aug; 146(3):631-44. PubMed ID: 10444071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom?
    Pfuhl M; Gautel M
    J Muscle Res Cell Motil; 2012 May; 33(1):83-94. PubMed ID: 22527637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The giant protein titin regulates the length of the striated muscle thick filament.
    Tonino P; Kiss B; Strom J; Methawasin M; Smith JE; Kolb J; Labeit S; Granzier H
    Nat Commun; 2017 Oct; 8(1):1041. PubMed ID: 29051486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The molecular basis for sarcomere organization in vertebrate skeletal muscle.
    Wang Z; Grange M; Wagner T; Kho AL; Gautel M; Raunser S
    Cell; 2021 Apr; 184(8):2135-2150.e13. PubMed ID: 33765442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myosin filament 3D structure in mammalian cardiac muscle.
    Al-Khayat HA; Morris EP; Kensler RW; Squire JM
    J Struct Biol; 2008 Aug; 163(2):117-26. PubMed ID: 18472277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C.
    Craig R; Lee KH; Mun JY; Torre I; Luther PK
    Pflugers Arch; 2014 Mar; 466(3):425-31. PubMed ID: 24413886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Titin organisation and the 3D architecture of the vertebrate-striated muscle I-band.
    Knupp C; Luther PK; Squire JM
    J Mol Biol; 2002 Sep; 322(4):731-9. PubMed ID: 12270710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac myosin binding protein C.
    Winegrad S
    Circ Res; 1999 May; 84(10):1117-26. PubMed ID: 10347086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Titin domain patterns correlate with the axial disposition of myosin at the end of the thick filament.
    Bennett PM; Gautel M
    J Mol Biol; 1996 Jun; 259(5):896-903. PubMed ID: 8683592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Point mutations in human beta cardiac myosin heavy chain have differential effects on sarcomeric structure and assembly: an ATP binding site change disrupts both thick and thin filaments, whereas hypertrophic cardiomyopathy mutations display normal assembly.
    Becker KD; Gottshall KR; Hickey R; Perriard JC; Chien KR
    J Cell Biol; 1997 Apr; 137(1):131-40. PubMed ID: 9105042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.
    Kampourakis T; Sun YB; Irving M
    Proc Natl Acad Sci U S A; 2016 May; 113(21):E3039-47. PubMed ID: 27162358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thick filament assembly occurs after the formation of a cytoskeletal scaffold.
    Van der Ven PF; Ehler E; Perriard JC; Fürst DO
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):569-79. PubMed ID: 10555075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of Frank-Starling law of the heart and stretch activation in striated muscles may have a common molecular origin.
    Kawai M; Jin JP
    J Muscle Res Cell Motil; 2021 Jun; 42(2):355-366. PubMed ID: 33575955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.