These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 37914933)

  • 41. Dependence of thick filament structure in relaxed mammalian skeletal muscle on temperature and interfilament spacing.
    Caremani M; Fusi L; Linari M; Reconditi M; Piazzesi G; Irving TC; Narayanan T; Irving M; Lombardi V; Brunello E
    J Gen Physiol; 2021 Mar; 153(3):. PubMed ID: 33416833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Altered expression of titin and contractile proteins in failing human myocardium.
    Hein S; Scholz D; Fujitani N; Rennollet H; Brand T; Friedl A; Schaper J
    J Mol Cell Cardiol; 1994 Oct; 26(10):1291-306. PubMed ID: 7869390
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inotropic interventions do not change the resting state of myosin motors during cardiac diastole.
    Caremani M; Pinzauti F; Powers JD; Governali S; Narayanan T; Stienen GJM; Reconditi M; Linari M; Lombardi V; Piazzesi G
    J Gen Physiol; 2019 Jan; 151(1):53-65. PubMed ID: 30510036
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension.
    Trombitás K; Granzier H
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C662-70. PubMed ID: 9277364
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A mechanical model of the half-sarcomere which includes the contribution of titin.
    Pertici I; Caremani M; Reconditi M
    J Muscle Res Cell Motil; 2019 Mar; 40(1):29-41. PubMed ID: 30900059
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle.
    Horowits R; Maruyama K; Podolsky RJ
    J Cell Biol; 1989 Nov; 109(5):2169-76. PubMed ID: 2808523
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Titin force in muscle cells alters lattice order, thick and thin filament protein formation.
    Hessel AL; Ma W; Mazara N; Rice PE; Nissen D; Gong H; Kuehn M; Irving T; Linke WA
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2209441119. PubMed ID: 36409887
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Orientation of myosin binding protein C in the cardiac muscle sarcomere determined by domain-specific immuno-EM.
    Lee K; Harris SP; Sadayappan S; Craig R
    J Mol Biol; 2015 Jan; 427(2):274-86. PubMed ID: 25451032
    [TBL] [Abstract][Full Text] [Related]  

  • 49. COOH-terminal truncated human cardiac MyBP-C alters myosin filament organization.
    Sébillon P; Bonne G; Flavigny J; Venin S; Rouche A; Fiszman M; Vikstrom K; Leinwand L; Carrier L; Schwartz K
    C R Acad Sci III; 2001 Mar; 324(3):251-60. PubMed ID: 11291312
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cardiac myosin binding protein C: its role in physiology and disease.
    Flashman E; Redwood C; Moolman-Smook J; Watkins H
    Circ Res; 2004 May; 94(10):1279-89. PubMed ID: 15166115
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Titin activates myosin filaments in skeletal muscle by switching from an extensible spring to a mechanical rectifier.
    Squarci C; Bianco P; Reconditi M; Pertici I; Caremani M; Narayanan T; Horváth ÁI; Málnási-Csizmadia A; Linari M; Lombardi V; Piazzesi G
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2219346120. PubMed ID: 36812205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cardiac myosin filaments are directly regulated by calcium.
    Ma W; Nag S; Gong H; Qi L; Irving TC
    J Gen Physiol; 2022 Dec; 154(12):. PubMed ID: 36327149
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250-kD carboxy-terminal region of titin by immunoelectron microscopy.
    Obermann WM; Gautel M; Steiner F; van der Ven PF; Weber K; Fürst DO
    J Cell Biol; 1996 Sep; 134(6):1441-53. PubMed ID: 8830773
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Titin Gene and Protein Functions in Passive and Active Muscle.
    Linke WA
    Annu Rev Physiol; 2018 Feb; 80():389-411. PubMed ID: 29131758
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Titin and the sarcomere symmetry paradox.
    Liversage AD; Holmes D; Knight PJ; Tskhovrebova L; Trinick J
    J Mol Biol; 2001 Jan; 305(3):401-9. PubMed ID: 11152599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Titins: giant proteins in charge of muscle ultrastructure and elasticity.
    Labeit S; Kolmerer B
    Science; 1995 Oct; 270(5234):293-6. PubMed ID: 7569978
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Myosin binding protein C, a phosphorylation-dependent force regulator in muscle that controls the attachment of myosin heads by its interaction with myosin S2.
    Kunst G; Kress KR; Gruen M; Uttenweiler D; Gautel M; Fink RH
    Circ Res; 2000 Jan 7-21; 86(1):51-8. PubMed ID: 10625305
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nebulin and titin modulate cross-bridge cycling and length-dependent calcium sensitivity.
    Mijailovich SM; Stojanovic B; Nedic D; Svicevic M; Geeves MA; Irving TC; Granzier HL
    J Gen Physiol; 2019 May; 151(5):680-704. PubMed ID: 30948421
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Atomic model of a myosin filament in the relaxed state.
    Woodhead JL; Zhao FQ; Craig R; Egelman EH; Alamo L; Padrón R
    Nature; 2005 Aug; 436(7054):1195-9. PubMed ID: 16121187
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins.
    Ait-Mou Y; Hsu K; Farman GP; Kumar M; Greaser ML; Irving TC; de Tombe PP
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2306-11. PubMed ID: 26858417
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.