BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 37915136)

  • 1. Coordination chemistry of mitochondrial copper metalloenzymes: exploring implications for copper dyshomeostasis in cell death.
    Shim D; Han J
    BMB Rep; 2023 Nov; 56(11):575-583. PubMed ID: 37915136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of dioxygen by copper metalloproteins and insights from model complexes.
    Quist DA; Diaz DE; Liu JJ; Karlin KD
    J Biol Inorg Chem; 2017 Apr; 22(2-3):253-288. PubMed ID: 27921179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes.
    Cobine PA; Pierrel F; Winge DR
    Biochim Biophys Acta; 2006 Jul; 1763(7):759-72. PubMed ID: 16631971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper trafficking systems in cells: insights into coordination chemistry and toxicity.
    Han J
    Dalton Trans; 2023 Oct; 52(42):15277-15296. PubMed ID: 37702384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Pulling the plug" on cellular copper: the role of mitochondria in copper export.
    Leary SC; Winge DR; Cobine PA
    Biochim Biophys Acta; 2009 Jan; 1793(1):146-53. PubMed ID: 18522804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases".
    Sharma KK; Singh D; Mohite SV; Williamson PR; Kennedy JF
    Int J Biol Macromol; 2023 Apr; 233():123534. PubMed ID: 36740121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper chaperone for superoxide dismutase-1 transfers copper to mitochondria but does not affect cytochrome c oxidase activity.
    Wang B; Dong D; Kang YJ
    Exp Biol Med (Maywood); 2013 Sep; 238(9):1017-23. PubMed ID: 23900152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of myocellular copper-trafficking proteins and mitochondrial copper enzymes repairs cardiac function in rats with diabetes-evoked heart failure.
    Zhang S; Liu H; Amarsingh GV; Cheung CCH; Wu D; Narayanan U; Zhang L; Cooper GJS
    Metallomics; 2020 Feb; 12(2):259-272. PubMed ID: 31821401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.
    Hematian S; Garcia-Bosch I; Karlin KD
    Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heme-copper and Heme O
    Panda S; Phan H; Karlin KD
    J Inorg Biochem; 2023 Dec; 249():112367. PubMed ID: 37742491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Getting out what you put in: Copper in mitochondria and its impacts on human disease.
    Cobine PA; Moore SA; Leary SC
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118867. PubMed ID: 32979421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase.
    Cobine PA; Pierrel F; Bestwick ML; Winge DR
    J Biol Chem; 2006 Dec; 281(48):36552-9. PubMed ID: 17008312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal Ion availability in mitochondria.
    Pierrel F; Cobine PA; Winge DR
    Biometals; 2007 Jun; 20(3-4):675-82. PubMed ID: 17225062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper oxide nanoparticles trigger macrophage cell death with misfolding of Cu/Zn superoxide dismutase 1 (SOD1).
    Gupta G; Cappellini F; Farcal L; Gornati R; Bernardini G; Fadeel B
    Part Fibre Toxicol; 2022 May; 19(1):33. PubMed ID: 35538581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry and biochemistry of superoxide dismutases.
    Hassan HM; Fridovich I
    Eur J Rheumatol Inflamm; 1981; 4(2):160-72. PubMed ID: 7343318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating effect of tiron on the capability of mitochondrial oxidative phosphorylation in the brain of rats exposed to radiation or manganese toxicity.
    Abdel-Magied N; Abdel-Aziz N; Shedid SM; Ahmed AG
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):12550-12562. PubMed ID: 30848428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supplemental ascorbate or alpha-tocopherol induces cell death in Cu-deficient HL-60 cells.
    Raymond LJ; Johnson WT
    Exp Biol Med (Maywood); 2004 Oct; 229(9):885-94. PubMed ID: 15388883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.
    Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A
    Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.