These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37915545)

  • 1. PAC Reinforcement Learning Algorithm for General-Sum Markov Games.
    Zehfroosh A; Tanner HG
    IEEE Trans Automat Contr; 2023 May; 68(5):2821-2831. PubMed ID: 37915545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiagent reinforcement learning with unshared value functions.
    Hu Y; Gao Y; An B
    IEEE Trans Cybern; 2015 Apr; 45(4):647-62. PubMed ID: 25014990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Hybrid PAC Reinforcement Learning Algorithm for Human-Robot Interaction.
    Zehfroosh A; Tanner HG
    Front Robot AI; 2022; 9():797213. PubMed ID: 35391942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approximating Nash equilibrium for anti-UAV jamming Markov game using a novel event-triggered multi-agent reinforcement learning.
    Feng Z; Huang M; Wu Y; Wu D; Cao J; Korovin I; Gorbachev S; Gorbacheva N
    Neural Netw; 2023 Apr; 161():330-342. PubMed ID: 36774870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.
    Hu Y; Gao Y; An B
    IEEE Trans Cybern; 2015 Jul; 45(7):1289-302. PubMed ID: 25181517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the complexity of computing Markov perfect equilibrium in general-sum stochastic games.
    Deng X; Li N; Mguni D; Wang J; Yang Y
    Natl Sci Rev; 2023 Jan; 10(1):nwac256. PubMed ID: 36684520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adversarial Decision-Making for Moving Target Defense: A Multi-Agent Markov Game and Reinforcement Learning Approach.
    Yao Q; Wang Y; Xiong X; Wang P; Li Y
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online Minimax Q Network Learning for Two-Player Zero-Sum Markov Games.
    Zhu Y; Zhao D
    IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1228-1241. PubMed ID: 33306474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empirical Policy Optimization for n-Player Markov Games.
    Zhu Y; Li W; Zhao M; Hao J; Zhao D
    IEEE Trans Cybern; 2023 Oct; 53(10):6443-6455. PubMed ID: 35749334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expected Policy Gradient for Network Aggregative Markov Games in Continuous Space.
    Moghaddam AR; Kebriaei H
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; PP():. PubMed ID: 38648129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive Individual Q-Learning-A Multiagent Reinforcement Learning Method for Coordination Optimization.
    Zhang Z; Wang D
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; PP():. PubMed ID: 38625776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decentralized indirect methods for learning automata games.
    Tilak O; Martin R; Mukhopadhyay S
    IEEE Trans Syst Man Cybern B Cybern; 2011 Oct; 41(5):1213-23. PubMed ID: 21925998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Q-Learning for Feedback Nash Strategy of Finite-Horizon Nonzero-Sum Difference Games.
    Zhang Z; Xu J; Fu M
    IEEE Trans Cybern; 2022 Sep; 52(9):9170-9178. PubMed ID: 33710965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Agent Reinforcement Learning for Joint Cooperative Spectrum Sensing and Channel Access in Cognitive UAV Networks.
    Jiang W; Yu W; Wang W; Huang T
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiagent Reinforcement Learning With Sparse Interactions by Negotiation and Knowledge Transfer.
    Zhou L; Yang P; Chen C; Gao Y
    IEEE Trans Cybern; 2017 May; 47(5):1238-1250. PubMed ID: 27046917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decentralized learning in Markov games.
    Vrancx P; Verbeeck K; Nowé A
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):976-81. PubMed ID: 18632387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decentralized multi-agent reinforcement learning based on best-response policies.
    Gabler V; Wollherr D
    Front Robot AI; 2024; 11():1229026. PubMed ID: 38690119
    [No Abstract]   [Full Text] [Related]  

  • 18. Toward Energy-Efficient Routing of Multiple AGVs with Multi-Agent Reinforcement Learning.
    Ye X; Deng Z; Shi Y; Shen W
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Collaborative Multiagent Reinforcement Learning Method Based on Policy Gradient Potential.
    Zhang Z; Ong YS; Wang D; Xue B
    IEEE Trans Cybern; 2021 Feb; 51(2):1015-1027. PubMed ID: 31443061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Reinforcement Learning for Nash Equilibrium of Differential Games.
    Li Z; Luo Y
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38261501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.