These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37916543)

  • 1. Emerging Liquid Metal Catalysts.
    Wang C; Wang T; Zeng M; Fu L
    J Phys Chem Lett; 2023 Nov; 14(44):10054-10066. PubMed ID: 37916543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Catalytic Applications of Zeolite-Supported Metal Catalysts.
    Sun Q; Wang N; Yu J
    Adv Mater; 2021 Dec; 33(51):e2104442. PubMed ID: 34611941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress of Ga-based liquid metals in catalysis.
    Sun X; Li H
    RSC Adv; 2022 Aug; 12(38):24946-24957. PubMed ID: 36199892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress, Mechanisms and Applications of Liquid-Metal Catalyst Systems.
    Liang ST; Wang HZ; Liu J
    Chemistry; 2018 Dec; 24(67):17616-17626. PubMed ID: 29845665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.
    Qi W; Yan P; Su DS
    Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production.
    Kim JH; Sa YJ; Lim T; Woo J; Joo SH
    Acc Chem Res; 2022 Sep; 55(18):2672-2684. PubMed ID: 36067418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic oxidation of CO on noble metal-based catalysts.
    Feng C; Liu X; Zhu T; Tian M
    Environ Sci Pollut Res Int; 2021 May; 28(20):24847-24871. PubMed ID: 33763831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in the Catalytic Conversion of Methane to Methanol: From the Challenges of Traditional Catalysts to the Use of Nanomaterials and Metal-Organic Frameworks.
    Vali SA; Markeb AA; Moral-Vico J; Font X; Sánchez A
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Free and Noble Metal-Free Heteroatom-Doped Nanostructured Carbons as Prospective Sustainable Electrocatalysts.
    Asefa T
    Acc Chem Res; 2016 Sep; 49(9):1873-83. PubMed ID: 27599362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coke Formation during Propane Dehydrogenation over Ga-Rh Supported Catalytically Active Liquid Metal Solutions.
    Wolf M; Raman N; Taccardi N; Haumann M; Wasserscheid P
    ChemCatChem; 2020 Feb; 12(4):1085-1094. PubMed ID: 32194874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Efficient Carbon and Water Cycles: Emerging Opportunities with Single-Site Catalysts Made of 3d Transition Metals.
    Wan G; Zhang G; Lin XM
    Adv Mater; 2020 Jan; 32(2):e1905548. PubMed ID: 31782566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress of catalytic methane combustion over transition metal oxide catalysts.
    Gao Y; Jiang M; Yang L; Li Z; Tian FX; He Y
    Front Chem; 2022; 10():959422. PubMed ID: 36003612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Sustainable Approach for Graphene Oxide-supported Metal N-Heterocyclic Carbenes Catalysts.
    Nandeshwar M; Mandal S; Kuppuswamy S; Prabusankar G
    Chem Asian J; 2023 Jan; 18(2):e202201138. PubMed ID: 36448356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.