BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37916840)

  • 21. Air-Stable Binary Hydrated Eutectic Electrolytes with Unique Solvation Structure for Rechargeable Aluminum-Ion Batteries.
    Meng P; Huang J; Yang Z; Jiang M; Wang Y; Zhang W; Zhang J; Sun B; Fu C
    Nanomicro Lett; 2023 Jul; 15(1):188. PubMed ID: 37515609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competitive Coordination Structure Regulation in Deep Eutectic Electrolyte for Stable Zinc Batteries.
    Deng W; Deng Z; Chen Y; Feng R; Wang X
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202316499. PubMed ID: 38185470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulating Interfacial Chemistry in Lithium-Ion Batteries by a Weakly Solvating Electrolyte*.
    Yao YX; Chen X; Yan C; Zhang XQ; Cai WL; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):4090-4097. PubMed ID: 32976693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation.
    Lu Y; Ni Y; Chen J
    Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlating the Solvating Power of Solvents with the Strength of Ion-Dipole Interaction in Electrolytes of Lithium-ion Batteries.
    Chen K; Shen X; Luo L; Chen H; Cao R; Feng X; Chen W; Fang Y; Cao Y
    Angew Chem Int Ed Engl; 2023 Nov; 62(47):e202312373. PubMed ID: 37806968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 2.75 V ammonium-based dual-ion battery.
    Zhao Z; Lei Y; Shi L; Tian Z; Hedhili MN; Khan Y; Alshareef HN
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202212941. PubMed ID: 36282179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microstructural Evolution of Zinc-Ion Species from Aqueous to Hydrated Eutectic Electrolyte for Zn-Ion Batteries.
    Su L; Lu F; Li Y; Li X; Chen L; Gao Y; Zheng L; Gao X
    ChemSusChem; 2023 Jul; 16(14):e202300285. PubMed ID: 37010877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Sustainable NH
    Tian Z; Yin J; Guo T; Zhao Z; Zhu Y; Wang Y; Yin J; Zou Y; Lei Y; Ming J; Bakr O; Mohammed OF; Alshareef HN
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202213757. PubMed ID: 36287573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultra-stable Zinc Metal Anodes at -20 °C through Eutectic Solvation Sheath in Chlorine-functionalized Eutectic Electrolytes with 1,3-Dioxolane.
    Lu X; Liu Z; Amardeep A; Wu Z; Tao L; Qu K; Sun H; Liu Y; Liu J
    Angew Chem Int Ed Engl; 2023 Aug; 62(33):e202307475. PubMed ID: 37318899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Amphiphilic Molecule-Regulated Core-Shell-Solvation Electrolyte for Li-Metal Batteries at Ultra-Low Temperature.
    Shi J; Xu C; Lai J; Li Z; Zhang Y; Liu Y; Ding K; Cai YP; Shang R; Zheng Q
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202218151. PubMed ID: 36727590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NH
    Song Z; Miao L; Lv Y; Gan L; Liu M
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202309446. PubMed ID: 37507839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrode-Electrolyte Interfacial Chemistry Modulation for Ultra-High Rate Sodium-Ion Batteries.
    Tang Z; Wang H; Wu PF; Zhou SY; Huang YC; Zhang R; Sun D; Tang YG; Wang HY
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202200475. PubMed ID: 35199431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stable Long Cycling of Small Molecular Organic Acid Electrode Materials Enabled by Nonflammable Eutectic Electrolyte.
    Liang Y; Wu W; Cao J; Guo R; Cao M; Zhang J; Wang M; Yu W; Zhang J
    Small; 2022 Feb; 18(6):e2104538. PubMed ID: 34850569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Shuttle-Free Solid-State Cu-Li Battery Based on a Sandwich-Structured Electrolyte.
    Wang H; Wang C; Zheng M; Liang J; Yang M; Feng X; Ren X; Yu DYW; Li Y; Sun X
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202214117. PubMed ID: 36377044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Green Ether Electrolytes for Sustainable High-voltage Potassium Ion Batteries.
    Ma X; Fu H; Shen J; Zhang D; Zhou J; Tong C; Rao AM; Zhou J; Fan L; Lu B
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312973. PubMed ID: 37846843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strongly Solvating Ether Electrolytes for High-Voltage Lithium Metal Batteries.
    Chen S; Zhu W; Tan L; Ruan D; Fan J; Chen Y; Meng X; Nian Q; Zhao X; Jiang J; Wang Z; Jiao S; Wu X; Ren X
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13155-13164. PubMed ID: 36857304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Practical High-Voltage Lithium Metal Batteries Enabled by Tuning the Solvation Structure in Weakly Solvating Electrolyte.
    Pham TD; Bin Faheem A; Kim J; Oh HM; Lee KK
    Small; 2022 Apr; 18(14):e2107492. PubMed ID: 35212457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Designing Anion-Derived Solid Electrolyte Interphase in a Siloxane-Based Electrolyte for Lithium-Metal Batteries.
    Wu J; Zhou T; Zhong B; Wang Q; Liu W; Zhou H
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):27873-27881. PubMed ID: 35671243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Full Flexible NH
    Farai Kuchena S; Wang Y
    Chemistry; 2021 Nov; 27(62):15450-15459. PubMed ID: 34331345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.