BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37916978)

  • 1. A Fully Automated Deep-Learning Model for Predicting the Molecular Subtypes of Posterior Fossa Ependymomas Using T2-Weighted Images.
    Cheng D; Zhuo Z; Du J; Weng J; Zhang C; Duan Y; Sun T; Wu M; Guo M; Hua T; Jin Y; Peng B; Li Z; Zhu M; Imami M; Bettegowda C; Sair H; Bai HX; Barkhof F; Liu X; Liu Y
    Clin Cancer Res; 2024 Jan; 30(1):150-158. PubMed ID: 37916978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Soap bubble" sign as an imaging marker for posterior fossa ependymoma Group B.
    Jin Y; Cheng D; Duan Y; Zhuo Z; Weng J; Zhang C; Zhu M; Liu X; Du J; Hua T; Li H; Haller S; Barkhof F; Liu Y
    Neuroradiology; 2023 Dec; 65(12):1707-1714. PubMed ID: 37837480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation.
    Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS
    Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic liver segmentation and assessment of liver fibrosis using deep learning with MR T1-weighted images in rats.
    Zhang W; Zhao N; Gao Y; Huang B; Wang L; Zhou X; Li Z
    Magn Reson Imaging; 2024 Apr; 107():1-7. PubMed ID: 38147969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging features to distinguish posterior fossa ependymoma subgroups.
    Leclerc T; Levy R; Tauziède-Espariat A; Roux CJ; Beccaria K; Blauwblomme T; Puget S; Grill J; Dufour C; Guerrini-Rousseau L; Abbou S; Bolle S; Roux A; Pallud J; Provost C; Oppenheim C; Varlet P; Boddaert N; Dangouloff-Ros V
    Eur Radiol; 2024 Mar; 34(3):1534-1544. PubMed ID: 37658900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning.
    Kang H; Witanto JN; Pratama K; Lee D; Choi KS; Choi SH; Kim KM; Kim MS; Kim JW; Kim YH; Park SJ; Park CK
    J Magn Reson Imaging; 2023 Mar; 57(3):871-881. PubMed ID: 35775971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas.
    Bangalore Yogananda CG; Shah BR; Vejdani-Jahromi M; Nalawade SS; Murugesan GK; Yu FF; Pinho MC; Wagner BC; Mickey B; Patel TR; Fei B; Madhuranthakam AJ; Maldjian JA
    Neuro Oncol; 2020 Mar; 22(3):402-411. PubMed ID: 31637430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images.
    Veiga-Canuto D; Cerdà-Alberich L; Jiménez-Pastor A; Carot Sierra JM; Gomis-Maya A; Sangüesa-Nebot C; Fernández-Patón M; Martínez de Las Heras B; Taschner-Mandl S; Düster V; Pötschger U; Simon T; Neri E; Alberich-Bayarri Á; Cañete A; Hero B; Ladenstein R; Martí-Bonmatí L
    Cancers (Basel); 2023 Mar; 15(5):. PubMed ID: 36900410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning.
    Jun Y; Park YW; Shin H; Shin Y; Lee JR; Han K; Ahn SS; Lim SM; Hwang D; Lee SK
    Eur Radiol; 2023 Sep; 33(9):6124-6133. PubMed ID: 37052658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmentation of human aorta using 3D nnU-net-oriented deep learning.
    Li F; Sun L; Lam KY; Zhang S; Sun Z; Peng B; Xu H; Zhang L
    Rev Sci Instrum; 2022 Nov; 93(11):114103. PubMed ID: 36461517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based high-accuracy detection for lumbar and cervical degenerative disease on T2-weighted MR images.
    Yi W; Zhao J; Tang W; Yin H; Yu L; Wang Y; Tian W
    Eur Spine J; 2023 Nov; 32(11):3807-3814. PubMed ID: 36943484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmenting white matter hyperintensities on isotropic three-dimensional Fluid Attenuated Inversion Recovery magnetic resonance images: Assessing deep learning tools on a Norwegian imaging database.
    Røvang MS; Selnes P; MacIntosh BJ; Rasmus Groote I; Pålhaugen L; Sudre C; Fladby T; Bjørnerud A
    PLoS One; 2023; 18(8):e0285683. PubMed ID: 37616243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated prediction of the neoadjuvant chemotherapy response in osteosarcoma with deep learning and an MRI-based radiomics nomogram.
    Zhong J; Zhang C; Hu Y; Zhang J; Liu Y; Si L; Xing Y; Ding D; Geng J; Jiao Q; Zhang H; Yang G; Yao W
    Eur Radiol; 2022 Sep; 32(9):6196-6206. PubMed ID: 35364712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning for segmentation of the cervical cancer gross tumor volume on magnetic resonance imaging for brachytherapy.
    Rodríguez Outeiral R; González PJ; Schaake EE; van der Heide UA; Simões R
    Radiat Oncol; 2023 May; 18(1):91. PubMed ID: 37248490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics.
    Choi YS; Bae S; Chang JH; Kang SG; Kim SH; Kim J; Rim TH; Choi SH; Jain R; Lee SK
    Neuro Oncol; 2021 Feb; 23(2):304-313. PubMed ID: 32706862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomic signatures of posterior fossa ependymoma: Molecular subgroups and risk profiles.
    Zhang M; Wang E; Yecies D; Tam LT; Han M; Toescu S; Wright JN; Altinmakas E; Chen E; Radmanesh A; Nemelka J; Oztekin O; Wagner MW; Lober RM; Ertl-Wagner B; Ho CY; Mankad K; Vitanza NA; Cheshier SH; Jacques TS; Fisher PG; Aquilina K; Said M; Jaju A; Pfister S; Taylor MD; Grant GA; Mattonen S; Ramaswamy V; Yeom KW
    Neuro Oncol; 2022 Jun; 24(6):986-994. PubMed ID: 34850171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images.
    Huo L; Hu X; Xiao Q; Gu Y; Chu X; Jiang L
    Magn Reson Imaging; 2021 Oct; 82():31-41. PubMed ID: 34147598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Reproducibility of Deep Learning-Based Segmentation of the Prostate Gland and Zones on T2-Weighted MR Images.
    Sunoqrot MRS; Selnæs KM; Sandsmark E; Langørgen S; Bertilsson H; Bathen TF; Elschot M
    Diagnostics (Basel); 2021 Sep; 11(9):. PubMed ID: 34574031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Prediction of Early Recurrence in Advanced Sinonasal Squamous Cell Carcinoma With Deep Learning and Multi-parametric MRI-based Radiomics Nomogram.
    Lin M; Lin N; Yu S; Sha Y; Zeng Y; Liu A; Niu Y
    Acad Radiol; 2023 Oct; 30(10):2201-2211. PubMed ID: 36925335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning based on preoperative magnetic resonance (MR) images improves the predictive power of survival models in primary spinal cord astrocytomas.
    Sun T; Wang Y; Liu X; Li Z; Zhang J; Lu J; Qu L; Haller S; Duan Y; Zhuo Z; Cheng D; Xu X; Jia W; Liu Y
    Neuro Oncol; 2023 Jun; 25(6):1157-1165. PubMed ID: 36562243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.