These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37917011)

  • 1. Exfoliation Technology for Scalable Ligand-Free Core-Semishell Metal Nanoparticle Films.
    Lee S; Kang G; Kang J; Ko H
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37917011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching.
    Chen L; Deming CP; Peng Y; Hu P; Stofan J; Chen S
    Nanoscale; 2016 Aug; 8(30):14565-72. PubMed ID: 27417026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.
    Li X; Niitsoo O; Couzis A
    J Colloid Interface Sci; 2016 Mar; 465():333-41. PubMed ID: 26699450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating Polymer Transformation during the Encapsulation of Metal Nanoparticles by Polystyrene-
    Song X; Liu C; Liu X; Liu S
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3969-3975. PubMed ID: 31867959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Ligand Interactions and Their Roles in Controlling Nanoparticle Formation and Functions.
    Guan H; Harris C; Sun S
    Acc Chem Res; 2023 Jun; 56(12):1591-1601. PubMed ID: 37205747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroscopic Au@PANI Core/Shell Nanoparticle Superlattice Monolayer Film with Dual-Responsive Plasmonic Switches.
    Lin H; Song L; Huang Y; Cheng Q; Yang Y; Guo Z; Su F; Chen T
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11296-11304. PubMed ID: 32043861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A technique to functionalize and self-assemble macroscopic nanoparticle-ligand monolayer films onto template-free substrates.
    Fontana J; Spillmann C; Naciri J; Ratna BR
    J Vis Exp; 2014 May; (87):. PubMed ID: 24835464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and Efficient Self-Assembly of Au@ZnO Core-Shell Nanoparticle Arrays with an Enhanced and Tunable Plasmonic Absorption for Photoelectrochemical Hydrogen Generation.
    Sun Y; Xu B; Shen Q; Hang L; Men D; Zhang T; Li H; Li C; Li Y
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31897-31906. PubMed ID: 28853855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires.
    Srivastava S; Kotov NA
    Acc Chem Res; 2008 Dec; 41(12):1831-41. PubMed ID: 19053241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition.
    Cao K; Zhu Q; Shan B; Chen R
    Sci Rep; 2015 Feb; 5():8470. PubMed ID: 25683469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instant interfacial self-assembly for homogeneous nanoparticle monolayer enabled conformal "lift-on" thin film technology.
    Song L; Xu BB; Cheng Q; Wang X; Luo X; Chen X; Chen T; Huang Y
    Sci Adv; 2021 Dec; 7(52):eabk2852. PubMed ID: 34936430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Colloidal Self-Assembly for Functional Materials.
    Hou S; Bai L; Lu D; Duan H
    Acc Chem Res; 2023 Apr; 56(7):740-751. PubMed ID: 36920352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of fluorescent Au-SiO
    Nallathamby PD; Hopf J; Irimata LE; McGinnity TL; Roeder RK
    J Mater Chem B; 2016 Aug; 4(32):5418-5428. PubMed ID: 32263465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle assembly on topographical polymer templates: effects of spin rate, nanoparticle size, ligand, and concentration.
    Pavan MJ; Ploshnik E; Shenhar R
    J Phys Chem B; 2012 Nov; 116(47):13922-31. PubMed ID: 23116163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial Defects Dictated In Situ Fabrication of Yolk-Shell Upconversion Nanoparticles by Electron-Beam Irradiation.
    Xu J; Tu D; Zheng W; Shang X; Huang P; Cheng Y; Wang Y; Chen X
    Adv Sci (Weinh); 2018 Oct; 5(10):1800766. PubMed ID: 30356918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of langmuir film of nanoparticles through successive compression cycles.
    Kim JY; Raja S; Stellacci F
    Small; 2011 Sep; 7(17):2526-32. PubMed ID: 21748850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition.
    Weber MJ; Verheijen MA; Bol AA; Kessels WM
    Nanotechnology; 2015 Mar; 26(9):094002. PubMed ID: 25676208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.