These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37917118)

  • 1. A new strategy for cardiac protection.
    Bouhamida E; Chaudhry HW
    Elife; 2023 Nov; 12():. PubMed ID: 37917118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIRT2 inhibition protects against cardiac hypertrophy and ischemic injury.
    Yang X; Chang HC; Tatekoshi Y; Mahmoodzadeh A; Balibegloo M; Najafi Z; Wu R; Chen C; Sato T; Shapiro J; Ardehali H
    Elife; 2023 Sep; 12():. PubMed ID: 37728319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIRT2 inhibition protects against cardiac hypertrophy and heart failure.
    Yang X; Chang HC; Tatekoshi Y; Balibegloo M; Wu R; Chen C; Sato T; Shapiro J; Ardehali H
    bioRxiv; 2023 Jan; ():. PubMed ID: 36747794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy.
    Tang X; Chen XF; Wang NY; Wang XM; Liang ST; Zheng W; Lu YB; Zhao X; Hao DL; Zhang ZQ; Zou MH; Liu DP; Chen HZ
    Circulation; 2017 Nov; 136(21):2051-2067. PubMed ID: 28947430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis.
    Sarikhani M; Maity S; Mishra S; Jain A; Tamta AK; Ravi V; Kondapalli MS; Desingu PA; Khan D; Kumar S; Rao S; Inbaraj M; Pandit AS; Sundaresan NR
    J Biol Chem; 2018 Apr; 293(14):5281-5294. PubMed ID: 29440391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of SIRT2 in vascular-related and heart-related diseases: A review.
    Wu B; You S; Qian H; Wu S; Lu S; Zhang Y; Sun Y; Zhang N
    J Cell Mol Med; 2021 Jul; 25(14):6470-6478. PubMed ID: 34028177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHD Finger Protein 19 Promotes Cardiac Hypertrophy via Epigenetically Regulating SIRT2.
    Gu W; Cheng Y; Wang S; Sun T; Li Z
    Cardiovasc Toxicol; 2021 Jun; 21(6):451-461. PubMed ID: 33611744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CSN6 aggravates Ang II-induced cardiomyocyte hypertrophy via inhibiting SIRT2.
    Mei ZL; Wang HB; Hu YH; Xiong L
    Exp Cell Res; 2020 Nov; 396(1):112245. PubMed ID: 32882218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging roles of Sirtuin 2 in cardiovascular diseases.
    Taneja A; Ravi V; Hong JY; Lin H; Sundaresan NR
    FASEB J; 2021 Oct; 35(10):e21841. PubMed ID: 34582046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of sirtuins in cardiac disease.
    Matsushima S; Sadoshima J
    Am J Physiol Heart Circ Physiol; 2015 Nov; 309(9):H1375-89. PubMed ID: 26232232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial sirtuins in the heart.
    Bugger H; Witt CN; Bode C
    Heart Fail Rev; 2016 Sep; 21(5):519-28. PubMed ID: 27295248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sirtuin-2 mediates male specific neuronal injury following experimental cardiac arrest through activation of TRPM2 ion channels.
    Shimizu K; Quillinan N; Orfila JE; Herson PS
    Exp Neurol; 2016 Jan; 275 Pt 1(Pt 1):78-83. PubMed ID: 26522013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions.
    Afzaal A; Rehman K; Kamal S; Akash MSH
    J Biochem Mol Toxicol; 2022 Jul; 36(7):e23047. PubMed ID: 35297126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway.
    Xu M; Xue RQ; Lu Y; Yong SY; Wu Q; Cui YL; Zuo XT; Yu XJ; Zhao M; Zang WJ
    Cardiovasc Res; 2019 Mar; 115(3):530-545. PubMed ID: 30165480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity.
    Luo YX; Tang X; An XZ; Xie XM; Chen XF; Zhao X; Hao DL; Chen HZ; Liu DP
    Eur Heart J; 2017 May; 38(18):1389-1398. PubMed ID: 27099261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MKK6 deficiency promotes cardiac dysfunction through MKK3-p38γ/δ-mTOR hyperactivation.
    Romero-Becerra R; Mora A; Manieri E; Nikolic I; Santamans AM; Montalvo-Romeral V; Cruz FM; Rodríguez E; León M; Leiva-Vega L; Sanz L; Bondía V; Filgueiras-Rama D; Jiménez-Borreguero LJ; Jalife J; Gonzalez-Teran B; Sabio G
    Elife; 2022 Aug; 11():. PubMed ID: 35971771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel circ_0018553 protects against angiotensin-induced cardiac hypertrophy in cardiomyocytes by modulating the miR-4731/SIRT2 signaling pathway.
    Zuo H; Li L; Wang X; Chen S; Liao Z; Wei S; Ruan H; Li T; Chen J
    Hypertens Res; 2023 Feb; 46(2):421-436. PubMed ID: 36474029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tropisetron restores normal expression of BAD, SIRT1, SIRT3, and SIRT7 in the rat pressure overload-induced cardiac hypertrophy model.
    Karimollah A; Hemmatpur A; Safari F; Fakhrgholami M; Travat T
    J Biochem Mol Toxicol; 2023 Jul; 37(7):e23355. PubMed ID: 36999403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Songling Xuemaikang Capsule inhibits isoproterenol-induced cardiac hypertrophy via CaMKIIδ and ERK1/2 pathways.
    Qi J; Tan Y; Fan D; Pan W; Yu J; Xu W; Wu J; Zhang M
    J Ethnopharmacol; 2020 May; 253():112660. PubMed ID: 32061912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD38 promotes angiotensin II-induced cardiac hypertrophy.
    Guan XH; Hong X; Zhao N; Liu XH; Xiao YF; Chen TT; Deng LB; Wang XL; Wang JB; Ji GJ; Fu M; Deng KY; Xin HB
    J Cell Mol Med; 2017 Aug; 21(8):1492-1502. PubMed ID: 28296029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.