These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37917145)

  • 1. Increasing the Stability of Flavin-Dependent Halogenases by Disulfide Engineering.
    Besse C; Niemann HH; Sewald N
    Chembiochem; 2024 Jan; 25(1):e202300700. PubMed ID: 37917145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal.
    Moritzer AC; Minges H; Prior T; Frese M; Sewald N; Niemann HH
    J Biol Chem; 2019 Feb; 294(7):2529-2542. PubMed ID: 30559288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan.
    Zhu X; De Laurentis W; Leang K; Herrmann J; Ihlefeld K; van Pée KH; Naismith JH
    J Mol Biol; 2009 Aug; 391(1):74-85. PubMed ID: 19501593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling and regulation mechanisms of the flavin-dependent halogenase PyrH observed by infrared difference spectroscopy.
    Schroeder L; Diepold N; Gäfe S; Niemann HH; Kottke T
    J Biol Chem; 2024 Apr; 300(4):107210. PubMed ID: 38519030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissecting the low catalytic capability of flavin-dependent halogenases.
    Phintha A; Prakinee K; Jaruwat A; Lawan N; Visitsatthawong S; Kantiwiriyawanitch C; Songsungthong W; Trisrivirat D; Chenprakhon P; Mulholland A; van Pée KH; Chitnumsub P; Chaiyen P
    J Biol Chem; 2021; 296():100068. PubMed ID: 33465708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application and Modification of Flavin-Dependent Halogenases.
    van Pée KH; Milbredt D; Patallo EP; Weichold V; Gajewi M
    Methods Enzymol; 2016; 575():65-92. PubMed ID: 27417925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination.
    Neubauer PR; Widmann C; Wibberg D; Schröder L; Frese M; Kottke T; Kalinowski J; Niemann HH; Sewald N
    PLoS One; 2018; 13(5):e0196797. PubMed ID: 29746521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavin-dependent halogenases involved in secondary metabolism in bacteria.
    van Pée KH; Patallo EP
    Appl Microbiol Biotechnol; 2006 May; 70(6):631-41. PubMed ID: 16544142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Insights from Molecular Dynamics Simulations of Tryptophan 7-Halogenase and Tryptophan 5-Halogenase.
    Ainsley J; Mulholland AJ; Black GW; Sparagano O; Christov CZ; Karabencheva-Christova TG
    ACS Omega; 2018 May; 3(5):4847-4859. PubMed ID: 31458701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a Tryptophan 6-Halogenase from Streptomyces albus and Its Regioselectivity Determinants.
    Lee J; Kim J; Kim H; Kim EJ; Jeong HJ; Choi KY; Kim BG
    Chembiochem; 2020 May; 21(10):1446-1452. PubMed ID: 31916339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Single-Component Flavin Reductase/Flavin-Dependent Halogenase AetF is a Versatile Catalyst for Selective Bromination and Iodination of Arenes and Olefins.
    Jiang Y; Snodgrass HM; Zubi YS; Roof CV; Guan Y; Mondal D; Honeycutt NH; Lee JW; Lewis RD; Martinez CA; Lewis JC
    Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202214610. PubMed ID: 36282507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavin Adenine Dinucleotide-Dependent Halogenase XanH and Engineering of Multifunctional Fusion Halogenases.
    Kong L; Wang Q; Deng Z; You D
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying and Engineering Flavin Dependent Halogenases for Selective Biocatalysis.
    Lewis JC
    Acc Chem Res; 2024 Aug; 57(15):2067-2079. PubMed ID: 39038085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional insights into the self-sufficient flavin-dependent halogenase.
    Dai L; Li H; Dai S; Zhang Q; Zheng H; Hu Y; Guo RT; Chen CC
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129312. PubMed ID: 38216020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tri-enzyme fusion of tryptophan halogenase achieves a concise strategy for coenzyme self-sufficiency and the continuous halogenation of L-tryptophan.
    Liu HY; Qian F; Zhang HM; Gui Q; Wang YW; Wang P
    Biotechnol J; 2024 Apr; 19(4):e2300557. PubMed ID: 38581092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of FAD and tryptophan to the tryptophan 6-halogenase Thal is negatively coupled.
    Moritzer AC; Niemann HH
    Protein Sci; 2019 Dec; 28(12):2112-2118. PubMed ID: 31589794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and Activity of the Thermophilic Tryptophan-6 Halogenase BorH.
    Lingkon K; Bellizzi JJ
    Chembiochem; 2020 Apr; 21(8):1121-1128. PubMed ID: 31692209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric catalysis by flavin-dependent halogenases.
    Jiang Y; Lewis JC
    Chirality; 2023 Aug; 35(8):452-460. PubMed ID: 36916449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase.
    Shepherd SA; Menon BR; Fisk H; Struck AW; Levy C; Leys D; Micklefield J
    Chembiochem; 2016 May; 17(9):821-4. PubMed ID: 26840773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.