These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37917194)

  • 1. Sexual dimorphism of osteoclast reliance on mitochondrial oxidation of energy substrates in the mouse.
    Song C; Valeri A; Song F; Ji X; Liao X; Marmo T; Seeley R; Rutter J; Long F
    JCI Insight; 2023 Dec; 8(24):. PubMed ID: 37917194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation.
    Li B; Lee WC; Song C; Ye L; Abel ED; Long F
    FASEB J; 2020 Aug; 34(8):11058-11067. PubMed ID: 32627870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial fatty acid β-oxidation is important for normal osteoclast formation in growing female mice.
    Kushwaha P; Alekos NS; Kim SP; Li Z; Wolfgang MJ; Riddle RC
    Front Physiol; 2022; 13():997358. PubMed ID: 36187756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial complex I activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization.
    Jin Z; Wei W; Yang M; Du Y; Wan Y
    Cell Metab; 2014 Sep; 20(3):483-98. PubMed ID: 25130399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications.
    Bordukalo-Nikšić T; Kufner V; Vukičević S
    Front Immunol; 2022; 13():869422. PubMed ID: 35558080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Insights into Osteoclast Energy Metabolism.
    Ledesma-Colunga MG; Passin V; Lademann F; Hofbauer LC; Rauner M
    Curr Osteoporos Rep; 2023 Dec; 21(6):660-669. PubMed ID: 37816910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferrin receptor 1-mediated iron uptake regulates bone mass in mice via osteoclast mitochondria and cytoskeleton.
    Das BK; Wang L; Fujiwara T; Zhou J; Aykin-Burns N; Krager KJ; Lan R; Mackintosh SG; Edmondson R; Jennings ML; Wang X; Feng JQ; Barrientos T; Gogoi J; Kannan A; Gao L; Xing W; Mohan S; Zhao H
    Elife; 2022 Jun; 11():. PubMed ID: 35758636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased bone resorption by osteoclast-specific deletion of the sodium/calcium exchanger isoform 1 (NCX1).
    Albano G; Dolder S; Siegrist M; Mercier-Zuber A; Auberson M; Stoudmann C; Hofstetter W; Bonny O; Fuster DG
    Pflugers Arch; 2017 Feb; 469(2):225-233. PubMed ID: 27942992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of FGFR3 in Osteoclast Lineage Cells Results in Increased Bone Mass in Mice by Inhibiting Osteoclastic Bone Resorption.
    Su N; Li X; Tang Y; Yang J; Wen X; Guo J; Tang J; Du X; Chen L
    J Bone Miner Res; 2016 Sep; 31(9):1676-87. PubMed ID: 26990430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WHI-131 Promotes Osteoblast Differentiation and Prevents Osteoclast Formation and Resorption in Mice.
    Cheon YH; Kim JY; Baek JM; Ahn SJ; Jun HY; Erkhembaatar M; Kim MS; Lee MS; Oh J
    J Bone Miner Res; 2016 Feb; 31(2):403-15. PubMed ID: 26255791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interleukin‑17A facilitates osteoclast differentiation and bone resorption via activation of autophagy in mouse bone marrow macrophages.
    Song L; Tan J; Wang Z; Ding P; Tang Q; Xia M; Wei Y; Chen L
    Mol Med Rep; 2019 Jun; 19(6):4743-4752. PubMed ID: 31059030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CPT1A-Mediated Fatty Acid Oxidation Promotes Precursor Osteoclast Fusion in Rheumatoid Arthritis.
    Huang Z; Luo R; Yang L; Chen H; Zhang X; Han J; Wang H; Zhou Z; Wang Z; Shao L
    Front Immunol; 2022; 13():838664. PubMed ID: 35273614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMPKα1 negatively regulates osteoclastogenesis and mitigates pathological bone loss.
    Ribeiro MSP; Venturini LGR; Speck-Hernandez CA; Alabarse PVG; Xavier T; Taira TM; Duffles LF; Cunha FQ; Fukada SY
    J Biol Chem; 2023 Dec; 299(12):105379. PubMed ID: 37871745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of ferroportin in murine myeloid cells increases iron accumulation and stimulates osteoclastogenesis
    Wang L; Fang B; Fujiwara T; Krager K; Gorantla A; Li C; Feng JQ; Jennings ML; Zhou J; Aykin-Burns N; Zhao H
    J Biol Chem; 2018 Jun; 293(24):9248-9264. PubMed ID: 29724825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deficiency in the phosphatase PHLPP1 suppresses osteoclast-mediated bone resorption and enhances bone formation in mice.
    Mattson AM; Begun DL; Molstad DHH; Meyer MA; Oursler MJ; Westendorf JJ; Bradley EW
    J Biol Chem; 2019 Aug; 294(31):11772-11784. PubMed ID: 31189651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation.
    Kim JM; Jeong D; Kang HK; Jung SY; Kang SS; Min BM
    Cell Physiol Biochem; 2007; 20(6):935-46. PubMed ID: 17982276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormone-Independent Sexual Dimorphism in the Regulation of Bone Resorption by Krox20.
    Sabag E; Halperin E; Liron T; Hiram-Bab S; Frenkel B; Gabet Y
    J Bone Miner Res; 2019 Dec; 34(12):2277-2286. PubMed ID: 31398266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation.
    Ishii KA; Fumoto T; Iwai K; Takeshita S; Ito M; Shimohata N; Aburatani H; Taketani S; Lelliott CJ; Vidal-Puig A; Ikeda K
    Nat Med; 2009 Mar; 15(3):259-66. PubMed ID: 19252502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids.
    Akkaoui M; Cohen I; Esnous C; Lenoir V; Sournac M; Girard J; Prip-Buus C
    Biochem J; 2009 May; 420(3):429-38. PubMed ID: 19302064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microcytophotometric analysis of human osteoclast metabolism: lack of activity in certain oxidative pathways indicates inability to sustain biosynthesis during resorption.
    Dodds RA; Gowen M; Bradbeer JN
    J Histochem Cytochem; 1994 May; 42(5):599-606. PubMed ID: 8157931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.