These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37917969)

  • 1. Acoustic Trapping and Manipulation of Hollow Microparticles under Fluid Flow Using a Single-Lens Focused Ultrasound Transducer.
    Wrede P; Aghakhani A; Bozuyuk U; Yildiz E; Sitti M
    ACS Appl Mater Interfaces; 2023 Nov; 15(45):52224-36. PubMed ID: 37917969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping of microparticles in the near field of an ultrasonic transducer.
    Lilliehorn T; Simu U; Nilsson M; Almqvist M; Stepinski T; Laurell T; Nilsson J; Johansson S
    Ultrasonics; 2005 Mar; 43(5):293-303. PubMed ID: 15737379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic trapping of microbubbles in complex environments and controlled payload release.
    Baresch D; Garbin V
    Proc Natl Acad Sci U S A; 2020 Jul; 117(27):15490-15496. PubMed ID: 32571936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application.
    Lam KH; Hsu HS; Li Y; Lee C; Lin A; Zhou Q; Kim ES; Shung KK
    Biotechnol Bioeng; 2013 Mar; 110(3):881-6. PubMed ID: 23042219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic trapping with a high frequency linear phased array.
    Zheng F; Li Y; Hsu HS; Liu C; Tat Chiu C; Lee C; Ham Kim H; Shung KK
    Appl Phys Lett; 2012 Nov; 101(21):214104. PubMed ID: 23258939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.
    Adams MS; Salgaonkar VA; Scott SJ; Sommer G; Diederich CJ
    Med Phys; 2017 Oct; 44(10):5339-5356. PubMed ID: 28681404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined acoustic and optical trapping.
    Thalhammer G; Steiger R; Meinschad M; Hill M; Bernet S; Ritsch-Marte M
    Biomed Opt Express; 2011 Oct; 2(10):2859-70. PubMed ID: 22025990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles.
    Lo WC; Fan CH; Ho YJ; Lin CW; Yeh CK
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33408129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WE-C-218-01: Ultrasound Contrast Agents.
    Streeter JE; Dayton PA
    Med Phys; 2012 Jun; 39(6Part27):3953. PubMed ID: 28520019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexural wave-based soft attractor walls for trapping microparticles and cells.
    Aghakhani A; Cetin H; Erkoc P; Tombak GI; Sitti M
    Lab Chip; 2021 Feb; 21(3):582-596. PubMed ID: 33355319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Nanostructures as Acoustically Manipulatable Multifunctional Agents in Dynamic Fluid Flow.
    Kim DW; Wrede P; Estrada H; Yildiz E; Lazovic J; Bhargava A; Razansky D; Sitti M
    Adv Mater; 2024 Dec; 36(50):e2404514. PubMed ID: 39400967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput and directed microparticle manipulation in complex-shaped maze chambers based on travelling surface acoustic waves.
    Weng W; Pan H; Wang Y
    Analyst; 2022 Nov; 147(22):4962-4970. PubMed ID: 36255404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming.
    Lu X; Soto F; Li J; Li T; Liang Y; Wang J
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38870-38876. PubMed ID: 29028308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic trapping of particles using a Chinese taiji lens.
    Zhou Q; Zhang J; Ren X; Xu Z; Liu X
    Ultrasonics; 2021 Feb; 110():106262. PubMed ID: 33049475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ring-Focusing Fresnel Acoustic Lens for Long Depth-of-Focus Focused Ultrasound with Multiple Trapping Zones.
    Tang Y; Kim ES
    J Microelectromech Syst; 2020 Oct; 29(5):692-698. PubMed ID: 33746473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers.
    Tu YL; Chen SJ; Hwang YR
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27886050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused high frequency needle transducer for ultrasonic imaging and trapping.
    Hsu HS; Zheng F; Li Y; Lee C; Zhou Q; Kirk Shung K
    Appl Phys Lett; 2012 Jul; 101(2):24105. PubMed ID: 22865930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preclinical study to improve microbubble-mediated drug delivery in cancer using an ultrasonic probe with an interchangeable acoustic lens.
    Lee S; Jeon H; Shim S; Im M; Kim J; Kim JH; Lee BC
    Sci Rep; 2021 Jun; 11(1):12654. PubMed ID: 34135427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.