These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37917998)

  • 1. Crosslinked modified decellularized rabbit conjunctival stroma for reconstruction of tissue-engineered conjunctiva
    Chen F; Li C; Liu J; Dong Y; Chen J; Zhou Q
    Biomed Mater; 2023 Nov; 19(1):. PubMed ID: 37917998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosslinked Decellularized Porcine Pericardium as a Substrate for Conjunctival Reconstruction.
    Chen F; Deng J; Luo L; Zhu Y; Dong Y; Yang Y; Zhang R; Chen J; Zhou Q
    Stem Cells Int; 2022; 2022():7571146. PubMed ID: 35342430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aspartic acid and epidermal growth factor modified decellularized rabbit conjunctiva for conjunctival reconstruction.
    Xu L; Wang H; Luo L; Deng J; Chen F; Wang Y; Tang J; Wu Z; Zhou Q; Chen J
    Biomater Adv; 2022 Dec; 143():213164. PubMed ID: 36343391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of decellularized conjunctiva as a substrate for the ex vivo expansion of conjunctival epithelium.
    Kasbekar S; Kaye SB; Williams RL; Stewart RMK; Leow-Dyke S; Rooney P
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e973-e982. PubMed ID: 28112872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decellularized porcine conjunctiva as an alternative substrate for tissue-engineered epithelialized conjunctiva.
    Witt J; Dietrich J; Mertsch S; Schrader S; Spaniol K; Geerling G
    Ocul Surf; 2020 Oct; 18(4):901-911. PubMed ID: 32860970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjunctiva reconstruction by induced differentiation of human amniotic epithelial cells.
    Yang SP; Yang XZ; Cao GP
    Genet Mol Res; 2015 Oct; 14(4):13823-34. PubMed ID: 26535697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decellularised conjunctiva for ocular surface reconstruction.
    Witt J; Mertsch S; Borrelli M; Dietrich J; Geerling G; Schrader S; Spaniol K
    Acta Biomater; 2018 Feb; 67():259-269. PubMed ID: 29225150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xenogeneic acellular conjunctiva matrix as a scaffold of tissue-engineered corneal epithelium.
    Zhao H; Qu M; Wang Y; Wang Z; Shi W
    PLoS One; 2014; 9(11):e111846. PubMed ID: 25375996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-Printed membrane as an alternative to amniotic membrane for ocular surface/conjunctival defect reconstruction: An in vitro & in vivo study.
    Dehghani S; Rasoulianboroujeni M; Ghasemi H; Keshel SH; Nozarian Z; Hashemian MN; Zarei-Ghanavati M; Latifi G; Ghaffari R; Cui Z; Ye H; Tayebi L
    Biomaterials; 2018 Aug; 174():95-112. PubMed ID: 29793112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Putative rabbit conjunctival epithelial stem/progenitor cells preferentially reside in palpebral conjunctiva.
    Su L; Cui H; Xu C; Xie X; Chen Q; Gao X
    Curr Eye Res; 2011 Sep; 36(9):797-803. PubMed ID: 21812662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of corneal epithelium with human amniotic epithelial cells and repair of limbal deficiency in rabbit models.
    Zhou Q; Liu XY; Ruan YX; Wang L; Jiang MM; Wu J; Chen J
    Hum Cell; 2015 Jan; 28(1):22-36. PubMed ID: 25134797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocular surface repair using decellularized porcine conjunctiva.
    Zhao L; Jia Y; Zhao C; Li H; Wang F; Dong M; Liu T; Zhang S; Zhou Q; Shi W
    Acta Biomater; 2020 Jan; 101():344-356. PubMed ID: 31706041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of conjunctival epithelium-like tissue using a temperature-responsive culture dish.
    Yao Q; Zhu M; Chen J; Shao C; Yan C; Wang Z; Fan X; Gu P; Fu Y
    Mol Vis; 2015; 21():1113-21. PubMed ID: 26396489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitrified collagen-based conjunctival equivalent for ocular surface reconstruction.
    Zhou H; Lu Q; Guo Q; Chae J; Fan X; Elisseeff JH; Grant MP
    Biomaterials; 2014 Aug; 35(26):7398-406. PubMed ID: 24933512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [New approaches to ocular surface reconstruction beyond the cornea].
    Spaniol K; Holtmann C; Geerling G; Schrader S
    Ophthalmologe; 2017 Apr; 114(4):307-317. PubMed ID: 28005177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploitation of human mesenchymal stromal cell derived matrix towards the structural and functional restoration of the ocular surface.
    Yan D; Yan C; Yu F; Zhang S; Chen L; Wu N; Shao C; Yao Q; Sun H; Fu Y
    Biomater Sci; 2020 Sep; 8(17):4712-4727. PubMed ID: 32725006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palpebral conjunctival transient amplifying cells originate at the mucocutaneous junction and their progeny migrate toward the fornix.
    Wirtschafter JD; McLoon LK; Ketcham JM; Weinstock RJ; Cheung JC
    Trans Am Ophthalmol Soc; 1997; 95():417-29; discussion 429-32. PubMed ID: 9440182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urea-De-Epithelialized Human Amniotic Membrane for Ocular Surface Reconstruction.
    Bandeira F; Yam GH; Fuest M; Ong HS; Liu YC; Seah XY; Shen SY; Mehta JS
    Stem Cells Transl Med; 2019 Jul; 8(7):620-626. PubMed ID: 30868769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conjunctival reconstruction with progenitor cell-derived autologous epidermal sheets in rhesus monkey.
    Lu R; Zhang X; Huang D; Huang B; Gao N; Wang Z; Ge J
    PLoS One; 2011; 6(11):e25713. PubMed ID: 22096478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential candidate cells for constructing tissue-engineered lacrimal duct epithelium: a histological and cytological study in rabbits.
    Xie C; Li XY; Cui HG
    J Zhejiang Univ Sci B; 2015 Nov; 16(11):904-13. PubMed ID: 26537208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.