These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Deep learning of sleep apnea-hypopnea events for accurate classification of obstructive sleep apnea and determination of clinical severity. Yook S; Kim D; Gupte C; Joo EY; Kim H Sleep Med; 2024 Feb; 114():211-219. PubMed ID: 38232604 [TBL] [Abstract][Full Text] [Related]
23. A fused-image-based approach to detect obstructive sleep apnea using a single-lead ECG and a 2D convolutional neural network. Niroshana SMI; Zhu X; Nakamura K; Chen W PLoS One; 2021; 16(4):e0250618. PubMed ID: 33901251 [TBL] [Abstract][Full Text] [Related]
24. Performance comparison of peripheral arterial tonometry-based testing and polysomnography to diagnose obstructive sleep apnea in military personnel. O'Reilly BM; Wang Q; Collen J; Matsangas P; Colombo CJ; Mysliwiec V J Clin Sleep Med; 2022 Jun; 18(6):1523-1530. PubMed ID: 35641890 [TBL] [Abstract][Full Text] [Related]
25. Predictors of overnight postoperative respiratory complications in obese children undergoing adenotonsillectomy for obstructive sleep apnea. Lee TC; Wulfovich S; Kettler E; Nation J Int J Pediatr Otorhinolaryngol; 2022 Nov; 162():111334. PubMed ID: 36209625 [TBL] [Abstract][Full Text] [Related]
26. A Sleep Apnea Detection System Based on a One-Dimensional Deep Convolution Neural Network Model Using Single-Lead Electrocardiogram. Chang HY; Yeh CY; Lee CT; Lin CC Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722630 [TBL] [Abstract][Full Text] [Related]
27. Portable Sleep Apnea Syndrome Screening and Event Detection Using Long Short-Term Memory Recurrent Neural Network. Chang HC; Wu HT; Huang PC; Ma HP; Lo YL; Huang YH Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113849 [TBL] [Abstract][Full Text] [Related]
28. Comparing respiratory polygraphy with pulse transit time analysis versus overnight polysomnography in the diagnosis of obstructive sleep apnoea in children. Cheung TW; Lam DS; Chan PC; Yau PS; Yeung KW Sleep Med; 2021 May; 81():457-462. PubMed ID: 33865076 [TBL] [Abstract][Full Text] [Related]
29. Combining a wireless radar sleep monitoring device with deep machine learning techniques to assess obstructive sleep apnea severity. Lin SY; Tsai CY; Majumdar A; Ho YH; Huang YW; Kao CK; Yeh SM; Hsu WH; Kuan YC; Lee KY; Feng PH; Tseng CH; Chen KY; Kang JH; Lee HC; Wu CJ; Liu WT J Clin Sleep Med; 2024 Aug; 20(8):1267-1277. PubMed ID: 38546033 [TBL] [Abstract][Full Text] [Related]
30. Diagnosis of obstructive sleep apnea in children based on the XGBoost algorithm using nocturnal heart rate and blood oxygen feature. Ye P; Qin H; Zhan X; Wang Z; Liu C; Song B; Kong Y; Jia X; Qi Y; Ji J; Chang L; Ni X; Tai J Am J Otolaryngol; 2023; 44(2):103714. PubMed ID: 36738700 [TBL] [Abstract][Full Text] [Related]
31. Cost-effectiveness of polysomnography in the management of pediatric obstructive sleep apnea. Mitchell M; Werkhaven JA Int J Pediatr Otorhinolaryngol; 2020 Jun; 133():109943. PubMed ID: 32086039 [TBL] [Abstract][Full Text] [Related]
32. Automatic Assessment of Pediatric Sleep Apnea Severity Using Overnight Oximetry and Convolutional Neural Networks. Vaquerizo-Villar F; Alvarez D; Kheirandish-Gozal L; Gutierrez-Tobal GC; Gomez-Pilar J; Crespo A; Del Campo F; Gozal D; Hornero R Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():633-636. PubMed ID: 33018067 [TBL] [Abstract][Full Text] [Related]
33. Improving the Diagnostic Ability of Oximetry Recordings in Pediatric Sleep Apnea-Hypopnea Syndrome by Means of Multi-Class AdaBoost. Vaquerizo-Villar F; Alvarez D; Kheirandish-Gozal L; Gutierrez-Tobal GC; Barroso-Garcia V; Crespo A; Del Campo F; Gozal D; Hornero R Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():167-170. PubMed ID: 30441742 [TBL] [Abstract][Full Text] [Related]
34. Comparison of polysomnography, sleep apnea screening test and cardiopulmonary coupling in the diagnosis of pediatric obstructive sleep apnea syndrome. Zhai F; Li Y; Chen J Int J Pediatr Otorhinolaryngol; 2021 Oct; 149():110867. PubMed ID: 34385038 [TBL] [Abstract][Full Text] [Related]
35. A multi-task learning model using RR intervals and respiratory effort to assess sleep disordered breathing. Xie J; Fonseca P; van Dijk J; Overeem S; Long X Biomed Eng Online; 2024 May; 23(1):45. PubMed ID: 38705982 [TBL] [Abstract][Full Text] [Related]
37. Validity study of a multiscaled fusion network using single-lead electrocardiogram signals for obstructive sleep apnea diagnosis. Yue H; Li P; Li Y; Lin Y; Huang B; Sun L; Ma W; Fan X; Wen W; Lei W J Clin Sleep Med; 2023 Jun; 19(6):1017-1025. PubMed ID: 36734174 [TBL] [Abstract][Full Text] [Related]
38. Combination of symptoms and oxygen desaturation index in predicting childhood obstructive sleep apnea. Chang L; Wu J; Cao L Int J Pediatr Otorhinolaryngol; 2013 Mar; 77(3):365-71. PubMed ID: 23246417 [TBL] [Abstract][Full Text] [Related]
39. Validation of a pediatric obstructive sleep apnea screening tool. Kadmon G; Shapiro CM; Chung SA; Gozal D Int J Pediatr Otorhinolaryngol; 2013 Sep; 77(9):1461-4. PubMed ID: 23838544 [TBL] [Abstract][Full Text] [Related]
40. Estimation of the apnea-hypopnea index in a heterogeneous sleep-disordered population using optimised cardiovascular features. Papini GB; Fonseca P; van Gilst MM; van Dijk JP; Pevernagie DAA; Bergmans JWM; Vullings R; Overeem S Sci Rep; 2019 Nov; 9(1):17448. PubMed ID: 31772228 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]