These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37918322)

  • 1. The characteristics of proliferative cardiomyocytes in mammals.
    Yang X; Li L; Zeng C; Wang WE
    J Mol Cell Cardiol; 2023 Dec; 185():50-64. PubMed ID: 37918322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IL-13 promotes in vivo neonatal cardiomyocyte cell cycle activity and heart regeneration.
    Wodsedalek DJ; Paddock SJ; Wan TC; Auchampach JA; Kenarsary A; Tsaih SW; Flister MJ; O'Meara CC
    Am J Physiol Heart Circ Physiol; 2019 Jan; 316(1):H24-H34. PubMed ID: 30339498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated metabolic and epigenetic mechanisms in cardiomyocyte proliferation.
    Huang L; Wang Q; Gu S; Cao N
    J Mol Cell Cardiol; 2023 Aug; 181():79-88. PubMed ID: 37331466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Changes Associated With Cardiomyocyte Dedifferentiation Enable Adult Mammalian Cardiac Regeneration.
    Cheng YY; Gregorich Z; Prajnamitra RP; Lundy DJ; Ma TY; Huang YH; Lee YC; Ruan SC; Lin JH; Lin PJ; Kuo CW; Chen P; Yan YT; Tian R; Kamp TJ; Hsieh PCH
    Circulation; 2022 Dec; 146(25):1950-1967. PubMed ID: 36420731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What we know about cardiomyocyte dedifferentiation.
    Zhu Y; Do VD; Richards AM; Foo R
    J Mol Cell Cardiol; 2021 Mar; 152():80-91. PubMed ID: 33275936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiomyocyte maturation and its reversal during cardiac regeneration.
    Beisaw A; Wu CC
    Dev Dyn; 2024 Jan; 253(1):8-27. PubMed ID: 36502296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiomyocyte heterogeneity during zebrafish development and regeneration.
    Tsedeke AT; Allanki S; Gentile A; Jimenez-Amilburu V; Rasouli SJ; Guenther S; Lai SL; Stainier DYR; Marín-Juez R
    Dev Biol; 2021 Aug; 476():259-271. PubMed ID: 33857482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiomyocyte Ploidy, Metabolic Reprogramming and Heart Repair.
    Elia A; Mohsin S; Khan M
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A p53-based genetic tracing system to follow postnatal cardiomyocyte expansion in heart regeneration.
    Xiao Q; Zhang G; Wang H; Chen L; Lu S; Pan D; Liu G; Yang Z
    Development; 2017 Feb; 144(4):580-589. PubMed ID: 28087623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes.
    Kikuchi K; Holdway JE; Werdich AA; Anderson RM; Fang Y; Egnaczyk GF; Evans T; Macrae CA; Stainier DY; Poss KD
    Nature; 2010 Mar; 464(7288):601-5. PubMed ID: 20336144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo roles of glucocorticoid and vitamin D receptors in the control of neonatal cardiomyocyte proliferative potential.
    Cutie S; Payumo AY; Lunn D; Huang GN
    J Mol Cell Cardiol; 2020 May; 142():126-134. PubMed ID: 32289320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Epigenetic Regulation of Cardiomyocytes through Development for Therapeutic Cardiac Regeneration after Heart Failure.
    Kraus L
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The long and winding road of cardiomyocyte maturation.
    Maroli G; Braun T
    Cardiovasc Res; 2021 Feb; 117(3):712-726. PubMed ID: 32514522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate predetermination of cardiac myocytes during zebrafish heart regeneration.
    Tekeli I; Garcia-Puig A; Notari M; García-Pastor C; Aujard I; Jullien L; Raya A
    Open Biol; 2017 Jun; 7(6):. PubMed ID: 28659386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LRP6 downregulation promotes cardiomyocyte proliferation and heart regeneration.
    Wu Y; Zhou L; Liu H; Duan R; Zhou H; Zhang F; He X; Lu D; Xiong K; Xiong M; Zhuang J; Liu Y; Li L; Liang D; Chen YH
    Cell Res; 2021 Apr; 31(4):450-462. PubMed ID: 32973339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-coding RNAs in Cardiac Regeneration.
    van der Ven CFT; Hogewoning BCR; van Mil A; Sluijter JPG
    Adv Exp Med Biol; 2020; 1229():163-180. PubMed ID: 32285411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiomyocyte proliferation in cardiac development and regeneration: a guide to methodologies and interpretations.
    Leone M; Magadum A; Engel FB
    Am J Physiol Heart Circ Physiol; 2015 Oct; 309(8):H1237-50. PubMed ID: 26342071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Gridlock transcriptional repressor impedes vertebrate heart regeneration by restricting expression of lysine methyltransferase.
    She P; Zhang H; Peng X; Sun J; Gao B; Zhou Y; Zhu X; Hu X; Lai KS; Wong J; Zhou B; Wang L; Zhong TP
    Development; 2020 Sep; 147(18):. PubMed ID: 32988975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tbx6 induces cardiomyocyte proliferation in postnatal and adult mouse hearts.
    Haginiwa S; Sadahiro T; Kojima H; Isomi M; Tamura F; Kurotsu S; Tani H; Muraoka N; Miyake N; Miyake K; Fukuda K; Ieda M
    Biochem Biophys Res Commun; 2019 Jun; 513(4):1041-1047. PubMed ID: 31010673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiomyocyte cell cycling, maturation, and growth by multinucleation in postnatal swine.
    Velayutham N; Alfieri CM; Agnew EJ; Riggs KW; Baker RS; Ponny SR; Zafar F; Yutzey KE
    J Mol Cell Cardiol; 2020 Sep; 146():95-108. PubMed ID: 32710980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.