These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37918505)

  • 21. Clonostachys spp., natural mosquito antagonists, and their prospects for biological control of Aedes aegypti.
    Rodrigues J; Rocha LFN; Martinez JM; Montalva C; Humber RA; Luz C
    Parasitol Res; 2022 Oct; 121(10):2979-2984. PubMed ID: 35994116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conidia and blastospores of Metarhizium spp. and Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus.
    Bernardo CC; Barreto LP; E Silva CSR; Luz C; Arruda W; Fernandes ÉKK
    Ticks Tick Borne Dis; 2018 Jul; 9(5):1334-1342. PubMed ID: 29914750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neem oil increases the persistence of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae.
    Paula AR; Ribeiro A; Lemos FJA; Silva CP; Samuels RI
    Parasit Vectors; 2019 Apr; 12(1):163. PubMed ID: 30975207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Entomopathogenic fungi and Schinus molle essential oil: The combination of two eco-friendly agents against Aedes aegypti larvae.
    de Oliveira Barbosa Bitencourt R; de Souza Faria F; Marchesini P; Reis Dos Santos-Mallet J; Guedes Camargo M; Rita Elias Pinheiro Bittencourt V; Guedes Pontes E; Baptista Pereira D; Siqueira de Almeida Chaves D; da Costa Angelo I
    J Invertebr Pathol; 2022 Oct; 194():107827. PubMed ID: 36108793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microsclerotia from Metarhizium robertsii: Production, ultrastructural analysis, robustness, and insecticidal activity.
    García Riaño JL; Barrera GP; Hernández LC; Villamizar LF
    Fungal Biol; 2024 Apr; 128(2):1643-1656. PubMed ID: 38575237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimizing the Application Timing and Dosage of Metarhizium brunneum (Hypocreales: Clavicipitaceae) as a Biological Control Agent of Aedes aegypti (Diptera: Culicidae) Larvae.
    Alkhaibari AM; Wood MJ; Yavasoglu SI; Bull JC; Butt TM
    J Med Entomol; 2023 Mar; 60(2):339-345. PubMed ID: 36539333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth kinetic and nitrogen source optimization for liquid culture fermentation of Metarhizium robertsii blastospores and bioefficacy against the corn leafhopper Dalbulus maidis.
    Iwanicki NSA; Mascarin GM; Moreno SG; Eilenberg J; Delalibera Júnior I
    World J Microbiol Biotechnol; 2020 Apr; 36(5):71. PubMed ID: 32350696
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae.
    Scholte EJ; Takken W; Knols BG
    Acta Trop; 2007 Jun; 102(3):151-8. PubMed ID: 17544354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Entomopathogenic fungi for the control of larvae and adults of Aedes aegypti (Diptera: Culicidae) vector of dengue, chikungunya and Zika viruses in Mexico.
    Cisneros-Vázquez LA; Penilla-Navarro RP; Rodríguez AD; Ordóñez-González JG; Valdez-Delgado KM; Danis-Lozano R; Vázquez-Martínez G
    Salud Publica Mex; 2023 Mar; 65(2 mar-abr):144-150. PubMed ID: 38060859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Metarhizium anisopliae conidia mixed with soil against the eggs of Aedes aegypti.
    Leles RN; D'Alessandro WB; Luz C
    Parasitol Res; 2012 Apr; 110(4):1579-82. PubMed ID: 21984368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative humidity impacts development and activity against Aedes aegypti adults by granular formulations of Metarhizium humberi microsclerotia.
    Rodrigues J; Catão AML; Dos Santos AS; Paixão FRS; Santos TR; Martinez JM; Marreto RN; Mascarin GM; Fernandes ÉKK; Humber RA; Luz C
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2725-2736. PubMed ID: 33745009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Occurrence of entomopathogenic hypocrealean fungi in mosquitoes and their larval habitats in Central Brazil, and activity against Aedes aegypti.
    Rocha LFN; Rodrigues J; Martinez JM; Pereira TCD; Neto JRC; Montalva C; Humber RA; Luz C
    J Invertebr Pathol; 2022 Oct; 194():107803. PubMed ID: 35931180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Innovative granular formulation of Metarhizium robertsii microsclerotia and blastospores for cattle tick control.
    Marciano AF; Mascarin GM; Franco RFF; Golo PS; Jaronski ST; Fernandes ÉKK; Bittencourt VREP
    Sci Rep; 2021 Mar; 11(1):4972. PubMed ID: 33654152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of Tolypocladium cylindrosporum (Hypocreales, Ophiocordycipitaceae) isolates from Brazil and their efficacy against Aedes aegypti (Diptera, Culicidae).
    Montalva C; Silva JJ; Rocha LFN; Luz C; Humber RA
    J Appl Microbiol; 2019 Jan; 126(1):266-276. PubMed ID: 30160316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simple method to detect and to isolate entomopathogenic fungi (Hypocreales) from mosquito larvae.
    Rodrigues J; Bergamini C; Montalva C; Humber RA; Luz C
    J Invertebr Pathol; 2021 Jun; 182():107581. PubMed ID: 33798556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity of additives and their effect in formulations of Metarhizium anisopliae s.l. IP 46 against Aedes aegypti adults and on post mortem conidiogenesis.
    Rodrigues J; Borges PR; Fernandes ÉKK; Luz C
    Acta Trop; 2019 May; 193():192-198. PubMed ID: 30836061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding.
    Paula AR; Carolino AT; Silva CP; Samuels RI
    Parasit Vectors; 2011 May; 4():91. PubMed ID: 21615890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacteria isolated from Aedes aegypti with potential vector control applications.
    de Oliveira JC; de Melo Katak R; Muniz VA; de Oliveira MR; Rocha EM; da Silva WR; do Carmo EJ; Roque RA; Marinotti O; Terenius O; Astolfi-Filho S
    J Invertebr Pathol; 2024 Jun; 204():108094. PubMed ID: 38479456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of short-term temperature challenges on the larvicidal activities of the entomopathogenic watermold Leptolegnia chapmanii against Aedes aegypti, and development on infected dead larvae.
    Muniz ER; Catão AML; Rueda-Páramo ME; Rodrigues J; López Lastra CC; García JJ; Fernandes ÉKK; Luz C
    Fungal Biol; 2018 Jun; 122(6):430-435. PubMed ID: 29801786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exposure of newly deposited Aedes aegypti eggs to Metarhizium humberi and fungal development on the eggs.
    Sousa NA; Rodrigues J; Luz C; Humber RA
    J Invertebr Pathol; 2023 Mar; 197():107898. PubMed ID: 36806464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.