These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37918524)

  • 1. Sterol interactions influence the function of Wsc sensors.
    Bernauer L; Berzak P; Lehmayer L; Messenlehner J; Oberdorfer G; Zellnig G; Wolinski H; Augustin C; Baeck M; Emmerstorfer-Augustin A
    J Lipid Res; 2023 Dec; 64(12):100466. PubMed ID: 37918524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A block of endocytosis of the yeast cell wall integrity sensors Wsc1 and Wsc2 results in reduced fitness in vivo.
    Wilk S; Wittland J; Thywissen A; Schmitz HP; Heinisch JJ
    Mol Genet Genomics; 2010 Sep; 284(3):217-29. PubMed ID: 20652590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae.
    Verna J; Lodder A; Lee K; Vagts A; Ballester R
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13804-9. PubMed ID: 9391108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling.
    Kock C; Arlt H; Ungermann C; Heinisch JJ
    Cell Microbiol; 2016 Sep; 18(9):1251-67. PubMed ID: 27337501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel role for the mating type (MAT) locus in the maintenance of cell wall integrity in Saccharomyces cerevisiae.
    Verna J; Ballester R
    Mol Gen Genet; 1999 Jun; 261(4-5):681-9. PubMed ID: 10394905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in WSC genes for putative stress receptors result in sensitivity to multiple stress conditions and impairment of Rlm1-dependent gene expression in Saccharomyces cerevisiae.
    Zu T; Verna J; Ballester R
    Mol Genet Genomics; 2001 Sep; 266(1):142-55. PubMed ID: 11589572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A PhotoClick cholesterol-based quantitative proteomics screen for cytoplasmic sterol-binding proteins in Saccharomyces cerevisiae.
    Chauhan N; Sere YY; Sokol AM; Graumann J; Menon AK
    Yeast; 2020 Jan; 37(1):15-25. PubMed ID: 31758572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a consensus motif in Erg28p required for C-4 demethylation in yeast ergosterol biosynthesis based on mutation analysis.
    Ke X; Xia XY; Zheng RC; Zheng YG
    FEMS Microbiol Lett; 2018 Mar; 365(5):. PubMed ID: 29319811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sterol composition on the activity of the yeast G-protein-coupled receptor Ste2.
    Morioka S; Shigemori T; Hara K; Morisaka H; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2013 May; 97(9):4013-20. PubMed ID: 23053114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides.
    Raychaudhuri S; Im YJ; Hurley JH; Prinz WA
    J Cell Biol; 2006 Apr; 173(1):107-19. PubMed ID: 16585271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism.
    Silver PM; Oliver BG; White TC
    Eukaryot Cell; 2004 Dec; 3(6):1391-7. PubMed ID: 15590814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of sensor-specific stress response by transcriptional profiling of wsc1 and mid2 deletion strains and chimeric sensors in Saccharomyces cerevisiae.
    Bermejo C; García R; Straede A; Rodríguez-Peña JM; Nombela C; Heinisch JJ; Arroyo J
    OMICS; 2010 Dec; 14(6):679-88. PubMed ID: 20958245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling and molecular docking studies of the cytoplasmic domain of Wsc-family, full-length Ras2p, and therapeutic antifungal compounds.
    Vélez-Segarra V; Carrasquillo-Carrión K; Santini-González JJ; Ramos-Valerio YA; Vázquez-Quiñones LE; Roche-Lima A; Rodríguez-Medina JR; Parés-Matos EI
    Comput Biol Chem; 2019 Feb; 78():338-352. PubMed ID: 30654316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation by heme of sterol uptake in Saccharomyces cerevisiae.
    Shinabarger DL; Keesler GA; Parks LW
    Steroids; 1989; 53(3-5):607-23. PubMed ID: 2678610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mannosylinositol phosphorylceramides and ergosterol coodinately maintain cell wall integrity in the yeast Saccharomyces cerevisiae.
    Tanaka S; Tani M
    FEBS J; 2018 Jul; 285(13):2405-2427. PubMed ID: 29775232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pleiotropic mutations in Saccharomyces cerevisiae affecting sterol uptake and metabolism.
    Lewis TL; Keesler GA; Fenner GP; Parks LW
    Yeast; 1988 Jun; 4(2):93-106. PubMed ID: 3059715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ergosterol interacts with Sey1p to promote atlastin-mediated endoplasmic reticulum membrane fusion in Saccharomyces cerevisiae.
    Lee M; Moon Y; Lee S; Lee C; Jun Y
    FASEB J; 2019 Mar; 33(3):3590-3600. PubMed ID: 30462528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the Wsc1 protein, a putative receptor in the stress response of Saccharomyces cerevisiae.
    Lodder AL; Lee TK; Ballester R
    Genetics; 1999 Aug; 152(4):1487-99. PubMed ID: 10430578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Ergosterol Biosynthesis in
    Jordá T; Puig S
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32679672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ergosterol Turnover in Yeast: An Interplay between Biosynthesis and Transport.
    Sokolov SS; Trushina NI; Severin FF; Knorre DA
    Biochemistry (Mosc); 2019 Apr; 84(4):346-357. PubMed ID: 31228926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.