These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37919292)

  • 21. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite.
    Spandler C; O'Neill HS; Kamenetsky VS
    Nature; 2007 May; 447(7142):303-6. PubMed ID: 17507980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The oxidation state of the mantle and the extraction of carbon from Earth's interior.
    Stagno V; Ojwang DO; McCammon CA; Frost DJ
    Nature; 2013 Jan; 493(7430):84-8. PubMed ID: 23282365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for oxygen-conserving diamond formation in redox-buffered subducted oceanic crust sampled as eclogite.
    Aulbach S; Stachel T
    Nat Commun; 2022 Apr; 13(1):1924. PubMed ID: 35396553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Key new pieces of the HIMU puzzle from olivines and diamond inclusions.
    Weiss Y; Class C; Goldstein SL; Hanyu T
    Nature; 2016 Sep; 537(7622):666-670. PubMed ID: 27595333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genesis of Hawaiian lavas by crystallization of picritic magma in the deep mantle.
    Yang J; Wang C; Zhang J; Jin Z
    Nat Commun; 2023 Mar; 14(1):1382. PubMed ID: 36914642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust.
    Prouteau G; Scaillet B; Pichavant M; Maury R
    Nature; 2001 Mar; 410(6825):197-200. PubMed ID: 11242077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remobilization in the cratonic lithosphere recorded in polycrystalline diamond.
    Jacob DE; Viljoen KS; Grassineau N; Jagoutz E
    Science; 2000 Aug; 289(5482):1182-5. PubMed ID: 10947983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blue boron-bearing diamonds from Earth's lower mantle.
    Smith EM; Shirey SB; Richardson SH; Nestola F; Bullock ES; Wang J; Wang W
    Nature; 2018 Aug; 560(7716):84-87. PubMed ID: 30068951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rift-induced disruption of cratonic keels drives kimberlite volcanism.
    Gernon TM; Jones SM; Brune S; Hincks TK; Palmer MR; Schumacher JC; Primiceri RM; Field M; Griffin WL; O'Reilly SY; Keir D; Spencer CJ; Merdith AS; Glerum A
    Nature; 2023 Aug; 620(7973):344-350. PubMed ID: 37495695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinctive melt activity and chromite mineralization in Luobusa and Purang ophiolites, southern Tibet: constraints from trace element compositions of chromite and olivine.
    Su B; Zhou M; Jing J; Robinson PT; Chen C; Xiao Y; Liu X; Shi R; Lenaz D; Hu Y
    Sci Bull (Beijing); 2019 Jan; 64(2):108-121. PubMed ID: 36659634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diamonds, Eclogites, and the Oxidation State of the Earth's Mantle.
    Luth RW
    Science; 1993 Jul; 261(5117):66-8. PubMed ID: 17750546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Melting of sediments in the deep mantle produces saline fluid inclusions in diamonds.
    Förster MW; Foley SF; Marschall HR; Alard O; Buhre S
    Sci Adv; 2019 May; 5(5):eaau2620. PubMed ID: 31149629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of mantle ultrapotassic fluids in diamond formation.
    Palyanov YN; Shatsky VS; Sobolev NV; Sokol AG
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9122-7. PubMed ID: 17379668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfur and metal fertilization of the lower continental crust.
    Locmelis M; Fiorentini ML; Rushmer T; Arevalo R; Adam J; Denyszyn SW
    Lithos; 2016 Feb; 244():74-93. PubMed ID: 32908321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sublithospheric diamond ages and the supercontinent cycle.
    Timmerman S; Stachel T; Koornneef JM; Smit KV; Harlou R; Nowell GM; Thomson AR; Kohn SC; Davies JHFL; Davies GR; Krebs MY; Zhang Q; Milne SEM; Harris JW; Kaminsky F; Zedgenizov D; Bulanova G; Smith CB; Cabral Neto I; Silveira FV; Burnham AD; Nestola F; Shirey SB; Walter MJ; Steele A; Pearson DG
    Nature; 2023 Nov; 623(7988):752-756. PubMed ID: 37853128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrous mantle transition zone indicated by ringwoodite included within diamond.
    Pearson DG; Brenker FE; Nestola F; McNeill J; Nasdala L; Hutchison MT; Matveev S; Mather K; Silversmit G; Schmitz S; Vekemans B; Vincze L
    Nature; 2014 Mar; 507(7491):221-4. PubMed ID: 24622201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mantle-slab interaction and redox mechanism of diamond formation.
    Palyanov YN; Bataleva YV; Sokol AG; Borzdov YM; Kupriyanov IN; Reutsky VN; Sobolev NV
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20408-13. PubMed ID: 24297876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy oxygen recycled into the lithospheric mantle.
    Dallai L; Bianchini G; Avanzinelli R; Natali C; Conticelli S
    Sci Rep; 2019 Jun; 9(1):8793. PubMed ID: 31217538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling.
    Rohrbach A; Schmidt MW
    Nature; 2011 Apr; 472(7342):209-12. PubMed ID: 21441908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir.
    Woodhead J; Hergt J; Giuliani A; Maas R; Phillips D; Pearson DG; Nowell G
    Nature; 2019 Sep; 573(7775):578-581. PubMed ID: 31554979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.