These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37919341)
1. Novel protic ionic liquids-based phase change materials for high performance thermal energy storage systems. Mokhtarpour M; Rostami A; Shekaari H; Zarghami A; Faraji S Sci Rep; 2023 Nov; 13(1):18936. PubMed ID: 37919341 [TBL] [Abstract][Full Text] [Related]
2. Thermal properties of novel phase change materials based on protic ionic liquids containing ethanolamines and stearic acid for efficient thermal energy storage. Mokhtarpour M; Rostami A; Shekaari H; Zarghami A; Faraji S Phys Chem Chem Phys; 2024 May; 26(18):13839-13849. PubMed ID: 38656334 [TBL] [Abstract][Full Text] [Related]
3. A Comparative Study on the Thermal Energy Storage Performance of Bio-Based and Paraffin-Based PCMs Using DSC Procedures. Sam MN; Caggiano A; Mankel C; Koenders E Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260573 [TBL] [Abstract][Full Text] [Related]
4. Development of Novel Phase-Change Materials Derived from Methoxy Polyethylene Glycol and Aromatic Acyl Chlorides. Angel-López A; Norambuena Á; Arriaza-Echanes C; Terraza CA; Tundidor-Camba A; Coll D; Ortiz PA Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514458 [TBL] [Abstract][Full Text] [Related]
6. Oriented High Thermal Conductivity Solid-Solid Phase Change Materials for Mid-Temperature Solar-Thermal Energy Storage. Dai Z; Gao Y; Wang C; Wu D; Jiang Z; She X; Ding Y; Zhang X; Zhao D ACS Appl Mater Interfaces; 2023 Jun; 15(22):26863-26871. PubMed ID: 37230959 [TBL] [Abstract][Full Text] [Related]
7. Performance enhancement of a thermal energy storage system using shape-stabilized LDPE/hexadecane/SEBS composite PCMs by copper oxide addition. Trigui A; Abdelmouleh M; Boudaya C RSC Adv; 2022 Aug; 12(34):21990-22003. PubMed ID: 36043091 [TBL] [Abstract][Full Text] [Related]
8. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis. Huang J; Lu S; Kong X; Liu S; Li Y Materials (Basel); 2013 Oct; 6(10):4758-4775. PubMed ID: 28788358 [TBL] [Abstract][Full Text] [Related]
9. Compatibility of Phase Change Materials and Metals: Experimental Evaluation Based on the Corrosion Rate. Ostrý M; Bantová S; Struhala K Molecules; 2020 Jun; 25(12):. PubMed ID: 32570927 [TBL] [Abstract][Full Text] [Related]
10. Pyrazolium Phase-Change Materials for Solar-Thermal Energy Storage. Matuszek K; Vijayaraghavan R; Forsyth CM; Mahadevan S; Kar M; MacFarlane DR ChemSusChem; 2020 Jan; 13(1):159-164. PubMed ID: 31657142 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of carbonized waste tire for development of novel shape stabilized composite phase change material for thermal energy storage. Sarı A; Saleh TA; Hekimoğlu G; Tuzen M; Tyagi VV Waste Manag; 2020 Feb; 103():352-360. PubMed ID: 31923842 [TBL] [Abstract][Full Text] [Related]
12. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities. Atinafu DG; Yun BY; Wi S; Kang Y; Kim S Environ Res; 2021 Apr; 195():110853. PubMed ID: 33567299 [TBL] [Abstract][Full Text] [Related]
13. Functional Unit Construction for Heat Storage by Using Biomass-Based Composite. Su J; Weng M; Lu X; Xu W; Lyu S; Liu Y; Min Y Front Chem; 2022; 10():835455. PubMed ID: 35198540 [TBL] [Abstract][Full Text] [Related]
14. Thermal Characterization of Medium-Temperature Phase Change Materials (PCMs) for Thermal Energy Storage Using the T-History Method. Rolka P; Kwidzinski R; Przybylinski T; Tomaszewski A Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885526 [TBL] [Abstract][Full Text] [Related]
15. Micro- and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage. Zhu S; Nguyen MT; Yonezawa T Nanoscale Adv; 2021 Aug; 3(16):4626-4645. PubMed ID: 36134315 [TBL] [Abstract][Full Text] [Related]
16. Preparation of Phase Change Microcapsules with the Enhanced Photothermal Performance. Tahan Latibari S; Eversdijk J; Cuypers R; Drosou V; Shahi M Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31527466 [TBL] [Abstract][Full Text] [Related]
17. Preparation and Thermal Performance of Fatty Acid Binary Eutectic Mixture/Expanded Graphite Composites as Form-Stable Phase Change Materials for Thermal Energy Storage. Zhou D; Xiao S; Xiao X ACS Omega; 2023 Mar; 8(9):8596-8604. PubMed ID: 36910934 [TBL] [Abstract][Full Text] [Related]
18. Innovative building materials by upcycling clothing waste into thermal energy storage matrix with phase change materials. Jin D; Yong Choi J; Nam J; Yuk H; Kim S Waste Manag; 2024 Mar; 175():328-338. PubMed ID: 38237408 [TBL] [Abstract][Full Text] [Related]
19. Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage. Shen Z; Kwon S; Lee HL; Toivakka M; Oh K Int J Biol Macromol; 2022 Dec; 222(Pt B):3001-3013. PubMed ID: 36244531 [TBL] [Abstract][Full Text] [Related]
20. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form. Palacios A; De Gracia A; Haurie L; Cabeza LF; Fernández AI; Barreneche C Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29329212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]