These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 37919397)
1. Daily flow prediction of the Huayuankou hydrometeorological station based on the coupled CEEMDAN-SE-BiLSTM model. Li H; Zhang X; Sun S; Wen Y; Yin Q Sci Rep; 2023 Nov; 13(1):18915. PubMed ID: 37919397 [TBL] [Abstract][Full Text] [Related]
2. Multi-step forecasting of dissolved oxygen in River Ganga based on CEEMDAN-AdaBoost-BiLSTM-LSTM model. Pant N; Toshniwal D; Gurjar BR Sci Rep; 2024 May; 14(1):11199. PubMed ID: 38755217 [TBL] [Abstract][Full Text] [Related]
3. A monthly temperature prediction based on the CEEMDAN-BO-BiLSTM coupled model. Zhang X; Ren H; Liu J; Zhang Y; Cheng W Sci Rep; 2024 Jan; 14(1):808. PubMed ID: 38191680 [TBL] [Abstract][Full Text] [Related]
4. Monthly runoff prediction based on a coupled VMD-SSA-BiLSTM model. Zhang X; Wang X; Li H; Sun S; Liu F Sci Rep; 2023 Aug; 13(1):13149. PubMed ID: 37573389 [TBL] [Abstract][Full Text] [Related]
5. Prediction of sea ice area based on the CEEMDAN-SO-BiLSTM model. Guo Q; Zhang H; Zhang Y; Jiang X PeerJ; 2023; 11():e15748. PubMed ID: 37483978 [TBL] [Abstract][Full Text] [Related]
6. A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs. Yu W; Wang X; Jiang X; Zhao R; Zhao S Environ Sci Pollut Res Int; 2024 Jan; 31(1):262-279. PubMed ID: 38015396 [TBL] [Abstract][Full Text] [Related]
7. Predicting mine water inflow volumes using a decomposition-optimization algorithm-machine learning approach. Bian J; Hou T; Ren D; Lin C; Qiao X; Ma X; Ma J; Wang Y; Wang J; Liang X Sci Rep; 2024 Aug; 14(1):17777. PubMed ID: 39090145 [TBL] [Abstract][Full Text] [Related]
8. CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems. Zeng L; Li Z; Yang J; Xu X Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554314 [TBL] [Abstract][Full Text] [Related]
9. Phosphorus prediction in the middle reaches of the Yangtze river based on GRA-CEEMDAN-CNLSTM-DBO. Yao H; Huang Y; Lv P; Luo H Sci Rep; 2024 Aug; 14(1):19442. PubMed ID: 39169112 [TBL] [Abstract][Full Text] [Related]
10. Dynamic real-time forecasting technique for reclaimed water volumes in urban river environmental management. Zhang L; Wang C; Hu W; Wang X; Wang H; Sun X; Ren W; Feng Y Environ Res; 2024 May; 248():118267. PubMed ID: 38244969 [TBL] [Abstract][Full Text] [Related]
11. A novel approach to precipitation prediction using a coupled CEEMDAN-GRU-Transformer model with permutation entropy algorithm. Zhao J; Nie G; Yan M; Wang Y; Wang L Water Sci Technol; 2023 Aug; 88(4):1015-1038. PubMed ID: 37651335 [TBL] [Abstract][Full Text] [Related]
13. Temperature Prediction of Seasonal Frozen Subgrades Based on CEEMDAN-LSTM Hybrid Model. Chen L; Liu X; Zeng C; He X; Chen F; Zhu B Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957299 [TBL] [Abstract][Full Text] [Related]
14. A novel combined model for prediction of daily precipitation data using instantaneous frequency feature and bidirectional long short time memory networks. Latifoğlu L Environ Sci Pollut Res Int; 2022 Jun; 29(28):42899-42912. PubMed ID: 35092586 [TBL] [Abstract][Full Text] [Related]
15. Multi-step interval prediction of ultra-short-term wind power based on CEEMDAN-FIG and CNN-BiLSTM. Zhao Z; Nan H; Liu Z; Yu Y Environ Sci Pollut Res Int; 2022 Aug; 29(38):58097-58109. PubMed ID: 35362890 [TBL] [Abstract][Full Text] [Related]
16. An ensemble method to forecast 24-h ahead solar irradiance using wavelet decomposition and BiLSTM deep learning network. Singla P; Duhan M; Saroha S Earth Sci Inform; 2022; 15(1):291-306. PubMed ID: 34804244 [TBL] [Abstract][Full Text] [Related]
17. Runoff prediction of lower Yellow River based on CEEMDAN-LSSVM-GM(1,1) model. Guo S; Wen Y; Zhang X; Chen H Sci Rep; 2023 Jan; 13(1):1511. PubMed ID: 36707680 [TBL] [Abstract][Full Text] [Related]
18. A new denoising approach based on mode decomposition applied to the stock market time series: 2LE-CEEMDAN. Akşehir ZD; Kılıç E PeerJ Comput Sci; 2024; 10():e1852. PubMed ID: 38435596 [TBL] [Abstract][Full Text] [Related]
19. An improved framework to predict river flow time series data. Nazir HM; Hussain I; Ahmad I; Faisal M; Almanjahie IM PeerJ; 2019; 7():e7183. PubMed ID: 31304058 [TBL] [Abstract][Full Text] [Related]
20. Forecasting PM 2.5 concentration based on integrating of CEEMDAN decomposition method with SVM and LSTM. Ameri R; Hsu CC; Band SS; Zamani M; Shu CM; Khorsandroo S Ecotoxicol Environ Saf; 2023 Nov; 266():115572. PubMed ID: 37837695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]