These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37919799)

  • 1. MicroRNA-989 controls Aedes albopictus pupal-adult transition process by influencing cuticle chitin metabolism in pupae.
    Zhang R; Liu W; Fu J; Zhang Z
    Parasit Vectors; 2023 Nov; 16(1):397. PubMed ID: 37919799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. miR-306-5p is involved in chitin metabolism in Aedes albopictus pupae via linc8338-miR-306-5p-XM_019678125.2 axis.
    Zhang R; Liu W; Zhang Z
    Pestic Biochem Physiol; 2024 Mar; 200():105811. PubMed ID: 38582583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitin synthase genes of Aedes albopictus and their effects on development of pupae.
    Ruiling Z; Sha A; Zhong Z
    Arch Insect Biochem Physiol; 2024 Aug; 116(4):e22142. PubMed ID: 39166355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular identification of the chitinase genes in Aedes albopictus and essential roles of AaCht10 in pupal-adult transition.
    An S; Liu W; Fu J; Zhang Z; Zhang R
    Parasit Vectors; 2023 Apr; 16(1):120. PubMed ID: 37005671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNAi-mediated CHS-2 silencing affects the synthesis of chitin and the formation of the peritrophic membrane in the midgut of Aedes albopictus larvae.
    Zhang C; Ding Y; Zhou M; Tang Y; Chen R; Chen Y; Wen Y; Wang S
    Parasit Vectors; 2023 Aug; 16(1):259. PubMed ID: 37533099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of critical factors that significantly affect the dose-response in mosquitoes irradiated as pupae.
    Yamada H; Maiga H; Juarez J; De Oliveira Carvalho D; Mamai W; Ali A; Bimbile-Somda NS; Parker AG; Zhang D; Bouyer J
    Parasit Vectors; 2019 Sep; 12(1):435. PubMed ID: 31500662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional characterization of three MicroRNAs of the Asian tiger mosquito, Aedes albopictus.
    Puthiyakunnon S; Yao Y; Li Y; Gu J; Peng H; Chen X
    Parasit Vectors; 2013 Aug; 6(1):230. PubMed ID: 23924583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-71 and miR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting.
    Yang M; Wang Y; Jiang F; Song T; Wang H; Liu Q; Zhang J; Zhang J; Kang L
    PLoS Genet; 2016 Aug; 12(8):e1006257. PubMed ID: 27532544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-transcriptome profiling across different developmental stages of Aedes albopictus (Diptera: Culicidae) provides insights into chitin-related non-coding RNA and competing endogenous RNA networks.
    Liu W; An S; Cheng P; Zhang K; Gong M; Zhang Z; Zhang R
    Parasit Vectors; 2023 Jan; 16(1):33. PubMed ID: 36703236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Larval ecology and infestation indices of two major arbovirus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazzaville, the capital city of the Republic of the Congo.
    Wilson-Bahun TA; Kamgang B; Lenga A; Wondji CS
    Parasit Vectors; 2020 Sep; 13(1):492. PubMed ID: 32977841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus.
    Skalsky RL; Vanlandingham DL; Scholle F; Higgs S; Cullen BR
    BMC Genomics; 2010 Feb; 11():119. PubMed ID: 20167119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species.
    Zacarés M; Salvador-Herranz G; Almenar D; Tur C; Argilés R; Bourtzis K; Bossin H; Pla I
    Parasit Vectors; 2018 Dec; 11(Suppl 2):656. PubMed ID: 30583722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo characterization of transcriptome and gene expression dynamics in epidermis during the larval-pupal metamorphosis of common cutworm.
    Gu J; Huang LX; Gong YJ; Zheng SC; Liu L; Huang LH; Feng QL
    Insect Biochem Mol Biol; 2013 Sep; 43(9):794-808. PubMed ID: 23796435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The key breeding sites by pupal survey for dengue mosquito vectors, Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), in Guba, Cebu City, Philippines.
    Edillo FE; Roble ND; Otero ND
    Southeast Asian J Trop Med Public Health; 2012 Nov; 43(6):1365-74. PubMed ID: 23413699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication.
    Zhou Y; Liu Y; Yan H; Li Y; Zhang H; Xu J; Puthiyakunnon S; Chen X
    Parasit Vectors; 2014 Oct; 7():488. PubMed ID: 25331963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aedes albopictus (Diptera: Culicidae) on an Invasive Edge: Abundance, Spatial Distribution, and Habitat Usage of Larvae and Pupae Across Urban and Socioeconomic Environmental Gradients.
    Shragai T; Harrington LC
    J Med Entomol; 2019 Feb; 56(2):472-482. PubMed ID: 30566612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and expression characterization of insulin-like signaling in development and metabolism of Aedes albopictus.
    Dai Y; Li X; Ding J; Liang Z; Guo R; Yi T; Zhu Y; Chen S; Liang S; Liu W
    Parasit Vectors; 2023 Apr; 16(1):134. PubMed ID: 37072796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Update on the geographical distribution and prevalence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae), two major arbovirus vectors in Cameroon.
    Tedjou AN; Kamgang B; Yougang AP; Njiokou F; Wondji CS
    PLoS Negl Trop Dis; 2019 Mar; 13(3):e0007137. PubMed ID: 30883552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening for differentially expressed miRNAs in Aedes albopictus (Diptera: Culicidae) exposed to DENV-2 and their effect on replication of DENV-2 in C6/36 cells.
    Su J; Wang G; Li C; Xing D; Yan T; Zhu X; Liu Q; Wu Q; Guo X; Zhao T
    Parasit Vectors; 2019 Jan; 12(1):44. PubMed ID: 30658692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-252 of the Asian tiger mosquito Aedes albopictus regulates dengue virus replication by suppressing the expression of the dengue virus envelope protein.
    Yan H; Zhou Y; Liu Y; Deng Y; Chen X
    J Med Virol; 2014 Aug; 86(8):1428-36. PubMed ID: 25025105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.