These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37919902)
21. FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy. Wood AJ; Lin CH; Li M; Nishtala K; Alaei S; Rossello F; Sonntag C; Hersey L; Miles LB; Krisp C; Dudczig S; Fulcher AJ; Gibertini S; Conroy PJ; Siegel A; Mora M; Jusuf P; Packer NH; Currie PD Nat Commun; 2021 May; 12(1):2951. PubMed ID: 34012031 [TBL] [Abstract][Full Text] [Related]
22. Efficient engraftment of pluripotent stem cell-derived myogenic progenitors in a novel immunodeficient mouse model of limb girdle muscular dystrophy 2I. Azzag K; Ortiz-Cordero C; Oliveira NAJ; Magli A; Selvaraj S; Tungtur S; Upchurch W; Iaizzo PA; Lu QL; Perlingeiro RCR Skelet Muscle; 2020 Apr; 10(1):10. PubMed ID: 32321586 [TBL] [Abstract][Full Text] [Related]
23. Muscle and heart function restoration in a limb girdle muscular dystrophy 2I (LGMD2I) mouse model by systemic FKRP gene delivery. Qiao C; Wang CH; Zhao C; Lu P; Awano H; Xiao B; Li J; Yuan Z; Dai Y; Martin CB; Li J; Lu Q; Xiao X Mol Ther; 2014 Nov; 22(11):1890-9. PubMed ID: 25048216 [TBL] [Abstract][Full Text] [Related]
24. FKRP mutations cause congenital muscular dystrophy 1C and limb-girdle muscular dystrophy 2I in Asian patients. Awano H; Saito Y; Shimizu M; Sekiguchi K; Niijima S; Matsuo M; Maegaki Y; Izumi I; Kikuchi C; Ishibashi M; Okazaki T; Komaki H; Iijima K; Nishino I J Clin Neurosci; 2021 Oct; 92():215-221. PubMed ID: 34509255 [TBL] [Abstract][Full Text] [Related]
26. Dual FKRP/FST gene therapy normalizes ambulation, increases strength, decreases pathology, and amplifies gene expression in LGMDR9 mice. Lam P; Zygmunt DA; Ashbrook A; Bennett M; Vetter TA; Martin PT Mol Ther; 2024 Aug; 32(8):2604-2623. PubMed ID: 38910327 [TBL] [Abstract][Full Text] [Related]
27. Reduced expression of fukutin related protein in mice results in a model for fukutin related protein associated muscular dystrophies. Ackroyd MR; Skordis L; Kaluarachchi M; Godwin J; Prior S; Fidanboylu M; Piercy RJ; Muntoni F; Brown SC Brain; 2009 Feb; 132(Pt 2):439-51. PubMed ID: 19155270 [TBL] [Abstract][Full Text] [Related]
28. Impaired viability of muscle precursor cells in muscular dystrophy with glycosylation defects and amelioration of its severe phenotype by limited gene expression. Kanagawa M; Yu CC; Ito C; Fukada S; Hozoji-Inada M; Chiyo T; Kuga A; Matsuo M; Sato K; Yamaguchi M; Ito T; Ohtsuka Y; Katanosaka Y; Miyagoe-Suzuki Y; Naruse K; Kobayashi K; Okada T; Takeda S; Toda T Hum Mol Genet; 2013 Aug; 22(15):3003-15. PubMed ID: 23562821 [TBL] [Abstract][Full Text] [Related]
29. Efficacy of Gene Therapy Is Dependent on Disease Progression in Dystrophic Mice with Mutations in the FKRP Gene. Vannoy CH; Xiao W; Lu P; Xiao X; Lu QL Mol Ther Methods Clin Dev; 2017 Jun; 5():31-42. PubMed ID: 28480302 [TBL] [Abstract][Full Text] [Related]
30. Novel FKRP mutations in a Japanese MDC1C sibship clinically diagnosed with Fukuyama congenital muscular dystrophy. Yoshioka M; Kobayashi K; Toda T Brain Dev; 2017 Nov; 39(10):869-872. PubMed ID: 28629604 [TBL] [Abstract][Full Text] [Related]
31. Oral ribose supplementation in dystroglycanopathy: A single case study. Thewissen RMJ; Post MA; Maas DM; Veizaj R; Wagenaar I; Alsady M; Kools J; Bouman K; Zweers H; Meregalli PG; van der Kooi AJ; van Doorn PA; Groothuis JT; Lefeber DJ; Voermans NC JIMD Rep; 2024 May; 65(3):171-181. PubMed ID: 38736632 [TBL] [Abstract][Full Text] [Related]
32. A universal gene correction approach for FKRP-associated dystroglycanopathies to enable autologous cell therapy. Dhoke NR; Kim H; Selvaraj S; Azzag K; Zhou H; Oliveira NAJ; Tungtur S; Ortiz-Cordero C; Kiley J; Lu QL; Bang AG; Perlingeiro RCR Cell Rep; 2021 Jul; 36(2):109360. PubMed ID: 34260922 [TBL] [Abstract][Full Text] [Related]
33. Chemical and Chemo-Enzymatic Syntheses of Glycans Containing Ribitol Phosphate Scaffolding of Matriglycan. Tamura JI; Tamura T; Hoshino S; Imae R; Kato R; Yokono M; Nagase M; Ohno S; Manabe N; Yamaguchi Y; Manya H; Endo T ACS Chem Biol; 2022 Jun; 17(6):1513-1523. PubMed ID: 35670527 [TBL] [Abstract][Full Text] [Related]
34. Post-Natal knockdown of fukutin-related protein expression in muscle by long-termRNA interference induces dystrophic pathology [corrected]. Wang CH; Chan YM; Tang RH; Xiao B; Lu P; Keramaris-Vrantsis E; Zheng H; Qiao C; Jiang J; Li J; Ma HI; Lu Q; Xiao X Am J Pathol; 2011 Jan; 178(1):261-72. PubMed ID: 21224063 [TBL] [Abstract][Full Text] [Related]
35. Inhibitory machinery for the functional dystroglycan glycosylation. Kondo Y; Okajima T J Biochem; 2023 Apr; 173(5):333-335. PubMed ID: 36760122 [TBL] [Abstract][Full Text] [Related]
36. Break Down of the Complexity and Inconsistency Between Levels of Matriglycan and Disease Phenotype in FKRP-Related Dystroglycanopathies: A Review and Model of Interpretation. Lu QL; Holbrook MC; Cataldi MP; Blaeser A J Neuromuscul Dis; 2024; 11(2):275-284. PubMed ID: 38277301 [TBL] [Abstract][Full Text] [Related]
37. Ribitol enhances matriglycan of α-dystroglycan in breast cancer cells without affecting cell growth. Lu PJ; Tucker JD; Branch EK; Guo F; Blaeser AR; Lu QL Sci Rep; 2020 Mar; 10(1):4935. PubMed ID: 32188898 [TBL] [Abstract][Full Text] [Related]
38. Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies. Chan YM; Keramaris-Vrantsis E; Lidov HG; Norton JH; Zinchenko N; Gruber HE; Thresher R; Blake DJ; Ashar J; Rosenfeld J; Lu QL Hum Mol Genet; 2010 Oct; 19(20):3995-4006. PubMed ID: 20675713 [TBL] [Abstract][Full Text] [Related]
39. Elevated serum creatine kinase and small cerebellum prompt diagnosis of congenital muscular dystrophy due to FKRP mutations. Trovato R; Astrea G; Bartalena L; Ghirri P; Baldacci J; Giampietri M; Battini R; Santorelli FM; Fiorillo C J Child Neurol; 2014 Mar; 29(3):394-8. PubMed ID: 23420653 [TBL] [Abstract][Full Text] [Related]