These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 37920248)

  • 1. Recent advances and future directions in etiopathogenesis and mechanisms of reactive oxygen species in cancer treatment.
    Verma P; Rishi B; George NG; Kushwaha N; Dhandha H; Kaur M; Jain A; Jain A; Chaudhry S; Singh A; Siraj F; Misra A
    Pathol Oncol Res; 2023; 29():1611415. PubMed ID: 37920248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species in cancer: Current findings and future directions.
    Nakamura H; Takada K
    Cancer Sci; 2021 Oct; 112(10):3945-3952. PubMed ID: 34286881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox biology of regulated cell death in cancer: A focus on necroptosis and ferroptosis.
    Florean C; Song S; Dicato M; Diederich M
    Free Radic Biol Med; 2019 Apr; 134():177-189. PubMed ID: 30639617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential New Therapies "ROS-Based" in CLL: An Innovative Paradigm in the Induction of Tumor Cell Apoptosis.
    Sciaccotta R; Gangemi S; Penna G; Giordano L; Pioggia G; Allegra A
    Antioxidants (Basel); 2024 Apr; 13(4):. PubMed ID: 38671922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis.
    Wang B; Wang Y; Zhang J; Hu C; Jiang J; Li Y; Peng Z
    Arch Toxicol; 2023 Jun; 97(6):1439-1451. PubMed ID: 37127681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative cell death in cancer: mechanisms and therapeutic opportunities.
    An X; Yu W; Liu J; Tang D; Yang L; Chen X
    Cell Death Dis; 2024 Aug; 15(8):556. PubMed ID: 39090114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of oxidative stress-induced ferroptosis in cancer therapy.
    Li K; Fan C; Chen J; Xu X; Lu C; Shao H; Xi Y
    J Cell Mol Med; 2024 May; 28(10):e18399. PubMed ID: 38757920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids.
    Khan AQ; Rashid K; AlAmodi AA; Agha MV; Akhtar S; Hakeem I; Raza SS; Uddin S
    Biomed Pharmacother; 2021 Nov; 143():112142. PubMed ID: 34536761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin C and Cell Death.
    Szarka A; Kapuy O; Lőrincz T; Bánhegyi G
    Antioxid Redox Signal; 2021 Apr; 34(11):831-844. PubMed ID: 32586104
    [No Abstract]   [Full Text] [Related]  

  • 10. Reactive Oxygen Species Modulation in the Current Landscape of Anticancer Therapies.
    Li J; Lim JYS; Eu JQ; Chan AKMH; Goh BC; Wang L; Wong AL
    Antioxid Redox Signal; 2024 Aug; 41(4-6):322-341. PubMed ID: 38445392
    [No Abstract]   [Full Text] [Related]  

  • 11. Activation of apoptosis signalling pathways by reactive oxygen species.
    Redza-Dutordoir M; Averill-Bates DA
    Biochim Biophys Acta; 2016 Dec; 1863(12):2977-2992. PubMed ID: 27646922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferroptosis as a New Type of Cell Death and its Role in Cancer Treatment.
    Skoupilová H; Michalová E; Hrstka R
    Klin Onkol; 2018; 31(Suppl 2):21-26. PubMed ID: 31023020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species and cancer paradox: To promote or to suppress?
    Galadari S; Rahman A; Pallichankandy S; Thayyullathil F
    Free Radic Biol Med; 2017 Mar; 104():144-164. PubMed ID: 28088622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of reactive oxygen species: an emerging approach for cancer therapy.
    Zou Z; Chang H; Li H; Wang S
    Apoptosis; 2017 Nov; 22(11):1321-1335. PubMed ID: 28936716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The double-edged roles of ROS in cancer prevention and therapy.
    Wang Y; Qi H; Liu Y; Duan C; Liu X; Xia T; Chen D; Piao HL; Liu HX
    Theranostics; 2021; 11(10):4839-4857. PubMed ID: 33754031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reactive oxygen species-replenishing coordination polymer nanomedicine disrupts redox homeostasis and induces concurrent apoptosis-ferroptosis for combinational cancer therapy.
    Zhang Z; Pan Y; Cun JE; Li J; Guo Z; Pan Q; Gao W; Pu Y; Luo K; He B
    Acta Biomater; 2022 Oct; 151():480-490. PubMed ID: 35926781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melatonin and erastin emerge synergistic anti-tumor effects on oral squamous cell carcinoma by inducing apoptosis, ferroptosis, and inhibiting autophagy through promoting ROS.
    Wang L; Wang C; Li X; Tao Z; Zhu W; Su Y; Choi WS
    Cell Mol Biol Lett; 2023 May; 28(1):36. PubMed ID: 37131152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases.
    Nakamura T; Naguro I; Ichijo H
    Biochim Biophys Acta Gen Subj; 2019 Sep; 1863(9):1398-1409. PubMed ID: 31229492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer.
    Pathania D; Sechi M; Palomba M; Sanna V; Berrettini F; Sias A; Taheri L; Neamati N
    Biochim Biophys Acta; 2014 Jan; 1840(1):332-43. PubMed ID: 23954204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy.
    Gupta SC; Hevia D; Patchva S; Park B; Koh W; Aggarwal BB
    Antioxid Redox Signal; 2012 Jun; 16(11):1295-322. PubMed ID: 22117137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.