These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 37920888)

  • 1. ML-NPI: Predicting Interactions between Noncoding RNA and Protein Based on Meta-Learning in a Large-Scale Dynamic Graph.
    Wang T; Wang W; Jiang X; Mao J; Zhuo L; Liu M; Fu X; Yao X
    J Chem Inf Model; 2024 Apr; 64(7):2912-2920. PubMed ID: 37920888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NPI-DCGNN: An Accurate Tool for Identifying ncRNA-Protein Interactions Using a Dual-Channel Graph Neural Network.
    Zhang X; Zhao L; Chai Z; Wu H; Yang W; Li C; Jiang Y; Liu Q
    J Comput Biol; 2024 Aug; 31(8):742-756. PubMed ID: 38923911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks.
    Shen ZA; Luo T; Zhou YK; Yu H; Du PF
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting ncRNA-protein interactions based on dual graph convolutional network and pairwise learning.
    Zhuo L; Song B; Liu Y; Li Z; Fu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36063562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HeadTailTransfer: An efficient sampling method to improve the performance of graph neural network method in predicting sparse ncRNA-protein interactions.
    Wei J; Zhuo L; Pan S; Lian X; Yao X; Fu X
    Comput Biol Med; 2023 May; 157():106783. PubMed ID: 36958237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph Neural Network with Self-Supervised Learning for Noncoding RNA-Drug Resistance Association Prediction.
    Zheng J; Qian Y; He J; Kang Z; Deng L
    J Chem Inf Model; 2022 Aug; 62(15):3676-3684. PubMed ID: 35838124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GATLGEMF: A graph attention model with line graph embedding multi-complex features for ncRNA-protein interactions prediction.
    Yan J; Qu W; Li X; Wang R; Tan J
    Comput Biol Chem; 2024 Feb; 108():108000. PubMed ID: 38070456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for predicting ncRNA-protein interactions based on graph neural networks and community detection.
    Zhuo L; Chen Y; Song B; Liu Y; Su Y
    Methods; 2022 Nov; 207():74-80. PubMed ID: 36108992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring noncoding RNAs in thyroid cancer using a graph convolutional network approach.
    Xu H; Hu X; Yan X; Zhong W; Yin D; Gai Y
    Comput Biol Med; 2022 Jun; 145():105447. PubMed ID: 35430557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empowering Graph Neural Networks with Block-Based Dual Adaptive Deep Adjustment for Drug Resistance-Related NcRNA Discovery.
    Zhang Y; Li X
    J Chem Inf Model; 2024 Apr; 64(8):3537-3547. PubMed ID: 38523272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive review and evaluation of graph neural networks for non-coding RNA and complex disease associations.
    Hu X; Liu D; Zhang J; Fan Y; Ouyang T; Luo Y; Zhang Y; Deng L
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NPI-RGCNAE: Fast Predicting ncRNA-Protein Interactions Using the Relational Graph Convolutional Network Auto-Encoder.
    Yu H; Shen ZA; Du PF
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1861-1871. PubMed ID: 34699377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GDCL-NcDA: identifying non-coding RNA-disease associations via contrastive learning between deep graph learning and deep matrix factorization.
    Ai N; Liang Y; Yuan H; Ouyang D; Xie S; Liu X
    BMC Genomics; 2023 Jul; 24(1):424. PubMed ID: 37501127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction.
    Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J
    BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MHAM-NPI: Predicting ncRNA-protein interactions based on multi-head attention mechanism.
    Zhou Z; Du Z; Wei J; Zhuo L; Pan S; Fu X; Lian X
    Comput Biol Med; 2023 Sep; 163():107143. PubMed ID: 37339574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks.
    Zhang ZC; Zhang XF; Wu M; Ou-Yang L; Zhao XM; Li XL
    Bioinformatics; 2020 Jun; 36(11):3474-3481. PubMed ID: 32145009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NPInter v5.0: ncRNA interaction database in a new era.
    Zheng Y; Luo H; Teng X; Hao X; Yan X; Tang Y; Zhang W; Wang Y; Zhang P; Li Y; Zhao Y; Chen R; He S
    Nucleic Acids Res; 2023 Jan; 51(D1):D232-D239. PubMed ID: 36373614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-view contrastive heterogeneous graph attention network for lncRNA-disease association prediction.
    Zhao X; Wu J; Zhao X; Yin M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36528809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GM-lncLoc: LncRNAs subcellular localization prediction based on graph neural network with meta-learning.
    Cai J; Wang T; Deng X; Tang L; Liu L
    BMC Genomics; 2023 Jan; 24(1):52. PubMed ID: 36709266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks.
    Fu H; Huang F; Liu X; Qiu Y; Zhang W
    Bioinformatics; 2022 Jan; 38(2):426-434. PubMed ID: 34499148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.