BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37921224)

  • 1.
    Abot A; Pomié N; Astre G; Jaomanjaka F; Marchand P; Cani PD; Roudier N; Knauf C
    Int J Food Sci Nutr; 2024 Feb; 75(1):58-69. PubMed ID: 37921224
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Li C; Su Z; Chen Z; Cao J; Liu X; Xu F
    Front Pharmacol; 2023; 14():1149185. PubMed ID: 37050901
    [No Abstract]   [Full Text] [Related]  

  • 3. Limosilactobacillus reuteri and caffeoylquinic acid synergistically promote adipose browning and ameliorate obesity-associated disorders.
    Liu Y; Zhong X; Lin S; Xu H; Liang X; Wang Y; Xu J; Wang K; Guo X; Wang J; Yu M; Li C; Xie C
    Microbiome; 2022 Dec; 10(1):226. PubMed ID: 36517893
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Liu T; Zhou L; Li X; Song W; Liu Y; Wu S; Wang P; Dai X; Shi L
    J Agric Food Chem; 2024 May; 72(17):9880-9892. PubMed ID: 38646869
    [No Abstract]   [Full Text] [Related]  

  • 5. Lactobacillus fermentum promotes adipose tissue oxidative phosphorylation to protect against diet-induced obesity.
    Yoon Y; Kim G; Noh MG; Park JH; Jang M; Fang S; Park H
    Exp Mol Med; 2020 Sep; 52(9):1574-1586. PubMed ID: 32917958
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Choi SI; You S; Kim S; Won G; Kang CH; Kim GH
    Food Nutr Res; 2021; 65():. PubMed ID: 34776827
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Zhang C; Fang R; Lu X; Zhang Y; Yang M; Su Y; Jiang Y; Man C
    Food Funct; 2022 Jun; 13(12):6688-6701. PubMed ID: 35647914
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Zheng F; Wang Z; Stanton C; Ross RP; Zhao J; Zhang H; Yang B; Chen W
    Food Funct; 2021 May; 12(9):3919-3930. PubMed ID: 33977963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-fat-diet-induced obesity is associated with decreased antiinflammatory Lactobacillus reuteri sensitive to oxidative stress in mouse Peyer's patches.
    Sun J; Qiao Y; Qi C; Jiang W; Xiao H; Shi Y; Le GW
    Nutrition; 2016 Feb; 32(2):265-72. PubMed ID: 26620713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antimicrobial effect of 
    Ananda N; Suniarti DF; Bachtiar EW
    F1000Res; 2023; 12():1495. PubMed ID: 38434653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactic Acid Bacteria Strains Differently Modulate Gut Microbiota and Metabolic and Immunological Parameters in High-Fat Diet-Fed Mice.
    Fabersani E; Marquez A; Russo M; Ross R; Torres S; Fontana C; Puglisi E; Medina R; Gauffin-Cano P
    Front Nutr; 2021; 8():718564. PubMed ID: 34568404
    [No Abstract]   [Full Text] [Related]  

  • 12. Lactobacillus reuteri improves gut barrier function and affects diurnal variation of the gut microbiota in mice fed a high-fat diet.
    Li S; Qi C; Zhu H; Yu R; Xie C; Peng Y; Yin SW; Fan J; Zhao S; Sun J
    Food Funct; 2019 Aug; 10(8):4705-4715. PubMed ID: 31304501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats.
    Hsieh FC; Lan CC; Huang TY; Chen KW; Chai CY; Chen WT; Fang AH; Chen YH; Wu CS
    Food Funct; 2016 May; 7(5):2374-88. PubMed ID: 27163114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactobacillus casei Zhang exerts anti-obesity effect to obese glut1 and gut-specific-glut1 knockout mice via gut microbiota modulation mediated different metagenomic pathways.
    He Q; Zhang Y; Ma D; Zhang W; Zhang H
    Eur J Nutr; 2022 Jun; 61(4):2003-2014. PubMed ID: 34984487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal Analysis of the Intestinal Microbiota in the Obese Mangalica Pig Reveals Alterations in Bacteria and Bacteriophage Populations Associated With Changes in Body Composition and Diet.
    Hallowell HA; Higgins KV; Roberts M; Johnson RM; Bayne J; Maxwell HS; Brandebourg T; Hiltbold Schwartz E
    Front Cell Infect Microbiol; 2021; 11():698657. PubMed ID: 34737972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiobesity effect of Lactobacillus reuteri 263 associated with energy metabolism remodeling of white adipose tissue in high-energy-diet-fed rats.
    Chen LH; Chen YH; Cheng KC; Chien TY; Chan CH; Tsao SP; Huang HY
    J Nutr Biochem; 2018 Apr; 54():87-94. PubMed ID: 29329013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/- mice.
    Fåk F; Bäckhed F
    PLoS One; 2012; 7(10):e46837. PubMed ID: 23056479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice.
    Balakumar M; Prabhu D; Sathishkumar C; Prabu P; Rokana N; Kumar R; Raghavan S; Soundarajan A; Grover S; Batish VK; Mohan V; Balasubramanyam M
    Eur J Nutr; 2018 Feb; 57(1):279-295. PubMed ID: 27757592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limosilactobacillus reuteri SLZX19-12 Protects the Colon from Infection by Enhancing Stability of the Gut Microbiota and Barrier Integrity and Reducing Inflammation.
    Wu J; Lin Z; Wang X; Zhao Y; Zhao J; Liu H; Johnston LJ; Lu L; Ma X
    Microbiol Spectr; 2022 Jun; 10(3):e0212421. PubMed ID: 35658572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of angiopoietin-like 4 (ANGPTL4) in mice with diet-induced obesity uncouples visceral obesity from glucose intolerance partly via the gut microbiota.
    Janssen AWF; Katiraei S; Bartosinska B; Eberhard D; Willems van Dijk K; Kersten S
    Diabetologia; 2018 Jun; 61(6):1447-1458. PubMed ID: 29502266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.