These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37921253)

  • 1. Scalable generalized screening for high-order terms in the many-body expansion: Algorithm, open-source implementation, and demonstration.
    Broderick DR; Herbert JM
    J Chem Phys; 2023 Nov; 159(17):. PubMed ID: 37921253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aiming for benchmark accuracy with the many-body expansion.
    Richard RM; Lao KU; Herbert JM
    Acc Chem Res; 2014 Sep; 47(9):2828-36. PubMed ID: 24883986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the many-body expansion for large systems. II. Accuracy considerations.
    Lao KU; Liu KY; Richard RM; Herbert JM
    J Chem Phys; 2016 Apr; 144(16):164105. PubMed ID: 27131529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaching the complete-basis limit with a truncated many-body expansion.
    Richard RM; Lao KU; Herbert JM
    J Chem Phys; 2013 Dec; 139(22):224102. PubMed ID: 24329051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular tailoring approach: a route for ab initio treatment of large clusters.
    Sahu N; Gadre SR
    Acc Chem Res; 2014 Sep; 47(9):2739-47. PubMed ID: 24798296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the many-body expansion for large systems. I. Precision considerations.
    Richard RM; Lao KU; Herbert JM
    J Chem Phys; 2014 Jul; 141(1):014108. PubMed ID: 25005278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab Initio Molecular Dynamics Using Recursive, Spatially Separated, Overlapping Model Subsystems Mixed within an ONIOM-Based Fragmentation Energy Extrapolation Technique.
    Li J; Iyengar SS
    J Chem Theory Comput; 2015 Sep; 11(9):3978-91. PubMed ID: 26575894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs.
    Liu KY; Herbert JM
    J Chem Phys; 2017 Oct; 147(16):161729. PubMed ID: 29096456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are fragment-based quantum chemistry methods applicable to medium-sized water clusters?
    Yuan D; Shen X; Li W; Li S
    Phys Chem Chem Phys; 2016 Jun; 18(24):16491-500. PubMed ID: 27263629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the Electrostatically Embedded Many-Body Expansion to Microsolvation of Ammonia in Water Clusters.
    Sorkin A; Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2008 May; 4(5):683-8. PubMed ID: 26621082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An extensive assessment of the performance of pairwise and many-body interaction potentials in reproducing
    Herman KM; Xantheas SS
    Phys Chem Chem Phys; 2023 Mar; 25(10):7120-7143. PubMed ID: 36853239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pair-Pair Approximation to the Generalized Many-Body Expansion: An Alternative to the Four-Body Expansion for ab Initio Prediction of Protein Energetics via Molecular Fragmentation.
    Liu J; Herbert JM
    J Chem Theory Comput; 2016 Feb; 12(2):572-84. PubMed ID: 26730608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Many-Body Expansion for Aqueous Systems Revisited: I. Water-Water Interactions.
    Heindel JP; Xantheas SS
    J Chem Theory Comput; 2020 Nov; 16(11):6843-6855. PubMed ID: 33064486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving the CCSD(T) Basis-Set Limit in Sizable Molecular Clusters: Counterpoise Corrections for the Many-Body Expansion.
    Richard RM; Lao KU; Herbert JM
    J Phys Chem Lett; 2013 Aug; 4(16):2674-80. PubMed ID: 26706713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations.
    Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnam S; Agrawal PM; Komanduri R
    J Chem Phys; 2009 May; 130(18):184102. PubMed ID: 19449903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Many-Body Basis Set Superposition Effect.
    Ouyang JF; Bettens RP
    J Chem Theory Comput; 2015 Nov; 11(11):5132-43. PubMed ID: 26574311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory.
    Richard RM; Herbert JM
    J Chem Phys; 2012 Aug; 137(6):064113. PubMed ID: 22897261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry.
    Ramabhadran RO; Raghavachari K
    Acc Chem Res; 2014 Dec; 47(12):3596-604. PubMed ID: 25393551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-Screened Many-Body Expansion: A Practical Yet Accurate Fragmentation Method for Quantum Chemistry.
    Liu KY; Herbert JM
    J Chem Theory Comput; 2020 Jan; 16(1):475-487. PubMed ID: 31765559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.