These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3792140)

  • 21. Effects of cardiac glycosides on excitation-contraction coupling in frog skeletal muscle fibres.
    Sárközi S; Szentesi P; Jona I; Csernoch L
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):611-26. PubMed ID: 8887770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation of calcium release from the sarcoplasmic reticulum in frog skeletal muscle.
    Schneider MF; Simon BJ
    J Physiol; 1988 Nov; 405():727-45. PubMed ID: 2855645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of perchlorate on depolarization-induced conformational changes in the junctional foot protein and Ca2+ release from sarcoplasmic reticulum.
    Yano M; el-Hayek R; Ikemoto N
    Biochemistry; 1995 Oct; 34(39):12584-9. PubMed ID: 7548007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caffeine slows turn-off of calcium release in voltage clamped skeletal muscle fibers.
    Simon BJ; Klein MG; Schneider MF
    Biophys J; 1989 Apr; 55(4):793-7. PubMed ID: 2720072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct measurement of SR release flux by tracking 'Ca2+ spikes' in rat cardiac myocytes.
    Song LS; Sham JS; Stern MD; Lakatta EG; Cheng H
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):677-91. PubMed ID: 9769413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. T-tubule depolarization-induced SR Ca2+ release is controlled by dihydropyridine receptor- and Ca(2+)-dependent mechanisms in cell homogenates from rabbit skeletal muscle.
    Anderson K; Meissner G
    J Gen Physiol; 1995 Mar; 105(3):363-83. PubMed ID: 7769380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres.
    Brum G; Ríos E; Stéfani E
    J Physiol; 1988 Apr; 398():441-73. PubMed ID: 2455801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle.
    Martonosi AN
    Physiol Rev; 1984 Oct; 64(4):1240-320. PubMed ID: 6093162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling.
    Brum G; Fitts R; Pizarro G; Ríos E
    J Physiol; 1988 Apr; 398():475-505. PubMed ID: 3260626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alterations in triad ultrastructure following repetitive stimulation and intracellular changes associated with exercise in amphibian skeletal muscle.
    Usher-Smith JA; Fraser JA; Huang CL; Skepper JN
    J Muscle Res Cell Motil; 2007; 28(1):19-28. PubMed ID: 17333488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium release and intramembranous charge movement in frog skeletal muscle fibres with reduced (< 250 microM) calcium content.
    Pape PC; Carrier N
    J Physiol; 2002 Feb; 539(Pt 1):253-66. PubMed ID: 11850517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential effects of sarcoplasmic reticular Ca(2+)-ATPase inhibition on charge movements and calcium transients in intact amphibian skeletal muscle fibres.
    Chawla S; Skepper JN; Huang CL
    J Physiol; 2002 Mar; 539(Pt 3):869-82. PubMed ID: 11897856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Depolarization and contraction of skeletal muscle induced by intracellular stimulation -role of T-tubules in electro-chemical coupling.
    Yamamoto Y; Hasegawa Y; Hotta K
    Jpn J Physiol; 1976; 26(3):333-43. PubMed ID: 1003696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local control model of excitation-contraction coupling in skeletal muscle.
    Stern MD; Pizarro G; Ríos E
    J Gen Physiol; 1997 Oct; 110(4):415-40. PubMed ID: 9379173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of repeated tetanic stimulation on excitation-contraction coupling in cut muscle fibres of the frog.
    Györke S
    J Physiol; 1993 May; 464():699-710. PubMed ID: 8229825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excitation-contraction coupling from the 1950s into the new millennium.
    Dulhunty AF
    Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):763-72. PubMed ID: 16922804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of the alpha subunit of the voltage gated L-type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles.
    Linsley JW; Hsu IU; Wang W; Kuwada JY
    Traffic; 2017 Sep; 18(9):622-632. PubMed ID: 28697281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane repolarization stops caffeine-induced Ca2+ release in skeletal muscle cells.
    Suda N; Penner R
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5725-9. PubMed ID: 8202554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Depolarization-transcription signals in skeletal muscle use calcium flux through L channels, but bypass the sarcoplasmic reticulum.
    Huang CF; Flucher BE; Schmidt MM; Stroud SK; Schmidt J
    Neuron; 1994 Jul; 13(1):167-77. PubMed ID: 8043275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium uptake and release modulated by counter-ion conductances in the sarcoplasmic reticulum of skeletal muscle.
    Fink RH; Veigel C
    Acta Physiol Scand; 1996 Mar; 156(3):387-96. PubMed ID: 8729699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.