These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 37921648)
1. Pathologic polyglutamine aggregation begins with a self-poisoning polymer crystal. Kandola T; Venkatesan S; Zhang J; Lerbakken BT; Von Schulze A; Blanck JF; Wu J; Unruh JR; Berry P; Lange JJ; Box AC; Cook M; Sagui C; Halfmann R Elife; 2023 Nov; 12():. PubMed ID: 37921648 [TBL] [Abstract][Full Text] [Related]
2. Pathologic polyglutamine aggregation begins with a self-poisoning polymer crystal. Kandola T; Venkatesan S; Zhang J; Lerbakken B; Schulze AV; Blanck JF; Wu J; Unruh J; Berry P; Lange JJ; Box A; Cook M; Sagui C; Halfmann R bioRxiv; 2023 Jul; ():. PubMed ID: 36993401 [TBL] [Abstract][Full Text] [Related]
3. Polyglutamine expansion mutation yields a pathological epitope linked to nucleation of protein aggregate: determinant of Huntington's disease onset. Sugaya K; Matsubara S; Kagamihara Y; Kawata A; Hayashi H PLoS One; 2007 Jul; 2(7):e635. PubMed ID: 17653262 [TBL] [Abstract][Full Text] [Related]
4. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments. Jayaraman M; Kodali R; Sahoo B; Thakur AK; Mayasundari A; Mishra R; Peterson CB; Wetzel R J Mol Biol; 2012 Feb; 415(5):881-99. PubMed ID: 22178474 [TBL] [Abstract][Full Text] [Related]
5. Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids. Chatterjee D; Jacob RS; Ray S; Navalkar A; Singh N; Sengupta S; Gadhe L; Kadu P; Datta D; Paul A; Arunima S; Mehra S; Pindi C; Kumar S; Singru P; Senapati S; Maji SK Elife; 2022 Mar; 11():. PubMed ID: 35257659 [TBL] [Abstract][Full Text] [Related]
6. β-hairpin-mediated nucleation of polyglutamine amyloid formation. Kar K; Hoop CL; Drombosky KW; Baker MA; Kodali R; Arduini I; van der Wel PC; Horne WS; Wetzel R J Mol Biol; 2013 Apr; 425(7):1183-97. PubMed ID: 23353826 [TBL] [Abstract][Full Text] [Related]
7. Exploding the Repeat Length Paradigm while Exploring Amyloid Toxicity in Huntington's Disease. Wetzel R Acc Chem Res; 2020 Oct; 53(10):2347-2357. PubMed ID: 32975927 [TBL] [Abstract][Full Text] [Related]
8. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynamics simulations. Nakano M; Ebina K; Tanaka S J Mol Model; 2013 Apr; 19(4):1627-39. PubMed ID: 23288093 [TBL] [Abstract][Full Text] [Related]
9. Influence of the protein context on the polyglutamine length-dependent elongation of amyloid fibrils. Huynen C; Willet N; Buell AK; Duwez AS; Jerôme C; Dumoulin M Biochim Biophys Acta; 2015 Mar; 1854(3):239-48. PubMed ID: 25489872 [TBL] [Abstract][Full Text] [Related]
10. Conformational changes and aggregation of expanded polyglutamine proteins as therapeutic targets of the polyglutamine diseases: exposed beta-sheet hypothesis. Nagai Y; Popiel HA Curr Pharm Des; 2008; 14(30):3267-79. PubMed ID: 19075705 [TBL] [Abstract][Full Text] [Related]
11. The genetic landscape for amyloid beta fibril nucleation accurately discriminates familial Alzheimer's disease mutations. Seuma M; Faure AJ; Badia M; Lehner B; Bolognesi B Elife; 2021 Feb; 10():. PubMed ID: 33522485 [TBL] [Abstract][Full Text] [Related]
12. Amyloid Properties of Asparagine and Glutamine in Prion-like Proteins. Zhang Y; Man VH; Roland C; Sagui C ACS Chem Neurosci; 2016 May; 7(5):576-87. PubMed ID: 26911543 [TBL] [Abstract][Full Text] [Related]
14. Peptide sequences converting polyglutamine into a prion in yeast. Odani W; Urata K; Okuda M; Okuma S; Koyama H; Pack CG; Fujiwara K; Nojima T; Kinjo M; Kawai-Noma S; Taguchi H FEBS J; 2015 Feb; 282(3):477-90. PubMed ID: 25406629 [TBL] [Abstract][Full Text] [Related]
15. Folding of polyglutamine chains. Chopra M; Reddy AS; Abbott NL; de Pablo JJ J Chem Phys; 2008 Oct; 129(13):135102. PubMed ID: 19045125 [TBL] [Abstract][Full Text] [Related]
16. Inhibiting the nucleation of amyloid structure in a huntingtin fragment by targeting α-helix-rich oligomeric intermediates. Mishra R; Jayaraman M; Roland BP; Landrum E; Fullam T; Kodali R; Thakur AK; Arduini I; Wetzel R J Mol Biol; 2012 Feb; 415(5):900-17. PubMed ID: 22178478 [TBL] [Abstract][Full Text] [Related]
17. Polyglutamine induced misfolding of huntingtin exon1 is modulated by the flanking sequences. Lakhani VV; Ding F; Dokholyan NV PLoS Comput Biol; 2010 Apr; 6(4):e1000772. PubMed ID: 20442863 [TBL] [Abstract][Full Text] [Related]
18. A Targetable Self-association Surface of the Huntingtin exon1 Helical Tetramer Required for Assembly of Amyloid Pre-nucleation Oligomers. Mishra R; Gerlach GJ; Sahoo B; Camacho CJ; Wetzel R J Mol Biol; 2024 Jun; 436(12):168607. PubMed ID: 38734203 [TBL] [Abstract][Full Text] [Related]
19. Why Is Arginine the Only Amino Acid That Inhibits Polyglutamine Monomers from Taking on Toxic Conformations? Tanimoto S; Okumura H ACS Chem Neurosci; 2024 Aug; 15(15):2925-2935. PubMed ID: 39009034 [TBL] [Abstract][Full Text] [Related]
20. Protein Misfolding and Aggregation as a Therapeutic Target for Polyglutamine Diseases. Takeuchi T; Nagai Y Brain Sci; 2017 Oct; 7(10):. PubMed ID: 29019918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]