BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 37921982)

  • 1. A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency.
    Mishra A; Mishra TK; Nanda S; Mohanty MK; Dash M
    Mol Biol Rep; 2023 Dec; 50(12):10509-10524. PubMed ID: 37921982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops.
    Wang Y; Fan C; Hu H; Li Y; Sun D; Wang Y; Peng L
    Biotechnol Adv; 2016; 34(5):997-1017. PubMed ID: 27269671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of a fungal laccase fused with a bacterial cellulose-binding module improves the enzymatic saccharification efficiency of lignocellulose biomass in transgenic Arabidopsis thaliana.
    Iiyoshi R; Oguchi T; Furukawa T; Iimura Y; Ito Y; Sonoki T
    Transgenic Res; 2017 Dec; 26(6):753-761. PubMed ID: 28940087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice.
    Li F; Xie G; Huang J; Zhang R; Li Y; Zhang M; Wang Y; Li A; Li X; Xia T; Qu C; Hu F; Ragauskas AJ; Peng L
    Plant Biotechnol J; 2017 Sep; 15(9):1093-1104. PubMed ID: 28117552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize.
    Voorend W; Nelissen H; Vanholme R; De Vliegher A; Van Breusegem F; Boerjan W; Roldán-Ruiz I; Muylle H; Inzé D
    Plant Biotechnol J; 2016 Mar; 14(3):997-1007. PubMed ID: 26903034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.
    Li F; Zhang M; Guo K; Hu Z; Zhang R; Feng Y; Yi X; Zou W; Wang L; Wu C; Tian J; Lu T; Xie G; Peng L
    Plant Biotechnol J; 2015 May; 13(4):514-25. PubMed ID: 25418842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated NIRS and QTL assays reveal minor mannose and galactose as contrast lignocellulose factors for biomass enzymatic saccharification in rice.
    Hu Z; Wang Y; Liu J; Li Y; Wang Y; Huang J; Ai Y; Chen P; He Y; Aftab MN; Wang L; Peng L
    Biotechnol Biofuels; 2021 Jun; 14(1):144. PubMed ID: 34174936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice.
    Zhang J; Zou W; Li Y; Feng Y; Zhang H; Wu Z; Tu Y; Wang Y; Cai X; Peng L
    Plant Sci; 2015 Oct; 239():84-91. PubMed ID: 26398793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1.
    Hirano K; Masuda R; Takase W; Morinaka Y; Kawamura M; Takeuchi Y; Takagi H; Yaegashi H; Natsume S; Terauchi R; Kotake T; Matsushita Y; Sazuka T
    Planta; 2017 Jul; 246(1):61-74. PubMed ID: 28357539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice.
    Ambavaram MM; Krishnan A; Trijatmiko KR; Pereira A
    Plant Physiol; 2011 Feb; 155(2):916-31. PubMed ID: 21205614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hemicellulose modification and cell wall genetic improvement in plants].
    Guan L; Wang Y; Liu X; Peng L; Yang Q
    Sheng Wu Gong Cheng Xue Bao; 2024 Apr; 40(4):1002-1016. PubMed ID: 38658144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of traits and recalcitrance reduction of field-grown
    Li M; Pu Y; Yoo CG; Gjersing E; Decker SR; Doeppke C; Shollenberger T; Tschaplinski TJ; Engle NL; Sykes RW; Davis MF; Baxter HL; Mazarei M; Fu C; Dixon RA; Wang ZY; Neal Stewart C; Ragauskas AJ
    Biotechnol Biofuels; 2017; 10():12. PubMed ID: 28053668
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Fan C; Feng S; Huang J; Wang Y; Wu L; Li X; Wang L; Tu Y; Xia T; Li J; Cai X; Peng L
    Biotechnol Biofuels; 2017; 10():221. PubMed ID: 28932262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current state-of-the-art in ethanol production from lignocellulosic feedstocks.
    Robak K; Balcerek M
    Microbiol Res; 2020 Nov; 240():126534. PubMed ID: 32683278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of lignocellulosic materials for ethanol production: a review.
    Sun Y; Cheng J
    Bioresour Technol; 2002 May; 83(1):1-11. PubMed ID: 12058826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Characterization of NAC and MYB Transcription Factors Involved in Regulation of Biomass Production in Switchgrass (Panicum virgatum).
    Zhong R; Yuan Y; Spiekerman JJ; Guley JT; Egbosiuba JC; Ye ZH
    PLoS One; 2015; 10(8):e0134611. PubMed ID: 26248336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering grass biomass for sustainable and enhanced bioethanol production.
    Mohapatra S; Mishra SS; Bhalla P; Thatoi H
    Planta; 2019 Aug; 250(2):395-412. PubMed ID: 31236698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of the rice BAHD acyltransferase AT10 increases xylan-bound p-coumarate and reduces lignin in Sorghum bicolor.
    Tian Y; Lin CY; Park JH; Wu CY; Kakumanu R; Pidatala VR; Vuu KM; Rodriguez A; Shih PM; Baidoo EEK; Temple S; Simmons BA; Gladden JM; Scheller HV; Eudes A
    Biotechnol Biofuels; 2021 Nov; 14(1):217. PubMed ID: 34801067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.