BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37922752)

  • 21. An optimization method coupled the index-overlay method with entropy weighting model to assess seawater intrusion vulnerability.
    Wei A; Li D; Dai F; Lang X; Ma B; Wang Y
    Environ Sci Pollut Res Int; 2021 Jul; 28(27):36142-36156. PubMed ID: 33686600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tidal fluctuations relieve coastal seawater intrusion caused by groundwater pumping.
    Yu X; Wu L; Yu X; Xin P
    Mar Pollut Bull; 2022 Nov; 184():114231. PubMed ID: 36307948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling of aquifer vulnerability index using deep learning neural networks coupling with optimization algorithms.
    Elzain HE; Chung SY; Senapathi V; Sekar S; Park N; Mahmoud AA
    Environ Sci Pollut Res Int; 2021 Oct; 28(40):57030-57045. PubMed ID: 34081280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport and transformation of arsenic in coastal aquifer at the scenario of seawater intrusion followed by managed aquifer recharge.
    Yuan C; Wei Y; Xu X; Cao X
    Water Res; 2023 Feb; 229():119440. PubMed ID: 36462261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vulnerability Indexing to Saltwater Intrusion from Models at Two Levels using Artificial Intelligence Multiple Model (AIMM).
    Moazamnia M; Hassanzadeh Y; Nadiri AA; Sadeghfam S
    J Environ Manage; 2020 Feb; 255():109871. PubMed ID: 32063320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cost-effective management measures for coastal aquifers affected by saltwater intrusion and climate change.
    Abd-Elaty I; Kushwaha NL; Grismer ME; Elbeltagi A; Kuriqi A
    Sci Total Environ; 2022 Aug; 836():155656. PubMed ID: 35513154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Groundwater vulnerability assessment using AHP-DRASTIC-GALDIT comprehensive model: a case study of Binhai New Area, Tianjin, China.
    Luo D; Ma C; Qiu Y; Zhang Z; Wang L
    Environ Monit Assess; 2023 Jan; 195(2):268. PubMed ID: 36602628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review: saltwater intrusion in North Africa's coastal areas-current state and future challenges.
    Agoubi B
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):17029-17043. PubMed ID: 33646543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model.
    Kaliraj S; Chandrasekar N; Peter TS; Selvakumar S; Magesh NS
    Environ Monit Assess; 2015 Jan; 187(1):4073. PubMed ID: 25407988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Multi-Criteria Decision Making Methods for Reduction of Seawater Intrusion in Coastal Aquifers Using SEAWAT Code.
    Nasiri M; Moghaddam HK; Hamidi M
    J Contam Hydrol; 2021 Oct; 242():103848. PubMed ID: 34217884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The impact of a low-permeability upper layer on transient seawater intrusion in coastal aquifers.
    Abdoulhalik A; Ahmed A; Abdelgawad A; Hamill G
    J Environ Manage; 2022 Apr; 307():114602. PubMed ID: 35093755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of groundwater sustainable development considering seawater intrusion in Beihai City, China.
    Ma C; Li Y; Li X; Gao L
    Environ Sci Pollut Res Int; 2020 Feb; 27(5):4927-4943. PubMed ID: 31840220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment and delineation of potential groundwater recharge zones in areas prone to saltwater intrusion hazard: a case from Central Iran.
    Sadeghi AR; Hosseini SM
    Environ Monit Assess; 2022 Dec; 195(1):203. PubMed ID: 36526950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Joint identification of contaminant source characteristics and hydraulic conductivity in a tide-influenced coastal aquifer.
    Dodangeh A; Rajabi MM; Carrera J; Fahs M
    J Contam Hydrol; 2022 May; 247():103980. PubMed ID: 35245819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of aquifer heterogeneity on sea level rise-induced seawater intrusion: A probabilistic approach.
    Ketabchi H; Jahangir MS
    J Contam Hydrol; 2021 Jan; 236():103753. PubMed ID: 33307334
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of groundwater chemistry in coastal aquifers of the Jiangsu, east China: Insights from a multi-isotope (δ
    Mao C; Tan H; Song Y; Rao W
    J Contam Hydrol; 2020 Nov; 235():103730. PubMed ID: 33069000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated hydrochemical and ERT approach for seawater intrusion study in a coastal aquifer: a case study from Jafrabad Town, Gujarat State, India.
    Balwant P; Jyothi V; Pujari PR; Soni A; Padmakar C; Quamar R; Ramesh J; Gohel V; Mishra A
    Environ Monit Assess; 2021 Aug; 193(9):558. PubMed ID: 34365552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determining nitrate and sulfate pollution sources and transformations in a coastal aquifer impacted by seawater intrusion-A multi-isotopic approach combined with self-organizing maps and a Bayesian mixing model.
    Torres-Martínez JA; Mora A; Mahlknecht J; Kaown D; Barceló D
    J Hazard Mater; 2021 Sep; 417():126103. PubMed ID: 34229392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer.
    Anders R; Mendez GO; Futa K; Danskin WR
    Ground Water; 2014; 52(5):756-68. PubMed ID: 24032352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated Hydrogeological, Hydrochemical, and Isotopic Assessment of Seawater Intrusion into Coastal Aquifers in Al-Qatif Area, Eastern Saudi Arabia.
    Benaafi M; Tawabini B; Abba SI; Humphrey JD; Al-Areeq AM; Alhulaibi SA; Usman AG; Aljundi IH
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.