BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37922821)

  • 1. Interaction between chromite and Mn(II/IV) under anoxic, oxic and anoxic-oxic conditions: Dissolution, oxidation and pH dependence.
    Ao M; Sun S; Deng T; Li J; Liu T; Tang Y; Wang S; Qiu R
    J Environ Manage; 2024 Jan; 349():119475. PubMed ID: 37922821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural source of Cr(VI) in soil: The anoxic oxidation of Cr(III) by Mn oxides.
    Ao M; Sun S; Deng T; Zhang F; Liu T; Tang Y; Li J; Wang S; Qiu R
    J Hazard Mater; 2022 Jul; 433():128805. PubMed ID: 35381512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different Pathways for Cr(III) Oxidation: Implications for Cr(VI) Reoccurrence in Reduced Chromite Ore Processing Residue.
    Liu W; Li J; Zheng J; Song Y; Shi Z; Lin Z; Chai L
    Environ Sci Technol; 2020 Oct; 54(19):11971-11979. PubMed ID: 32905702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic oxidation and adsorption of Cr(III) on iron-manganese nodules under oxic conditions.
    Hai J; Liu L; Tan W; Hao R; Qiu G
    J Hazard Mater; 2020 May; 390():122166. PubMed ID: 32004764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing soil Mn abundance promotes the dissolution and oxidation of Cr(III) and increases the accumulation of Cr in rice grains.
    Ao M; Deng T; Sun S; Li M; Li J; Liu T; Yan B; Liu WS; Wang G; Jing D; Chao Y; Tang Y; Qiu R; Wang S
    Environ Int; 2023 May; 175():107939. PubMed ID: 37137179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible Light Accelerates Cr(III) Release and Oxidation in Cr-Fe Chromite Residues: An Overlooked Risk of Cr(VI) Reoccurrence.
    Lei D; Gou C; Wang C; Xue J; Zhang Z; Liu W; Lin Z; Zhang J
    Environ Sci Technol; 2022 Dec; 56(24):17674-17683. PubMed ID: 36468874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genesis of hexavalent chromium from natural sources in soil and groundwater.
    Oze C; Bird DK; Fendorf S
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6544-9. PubMed ID: 17420454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cr(OH)3(s) oxidation induced by surface catalyzed Mn(II) oxidation.
    Namgung S; Kwon MJ; Qafoku NP; Lee G
    Environ Sci Technol; 2014 Sep; 48(18):10760-8. PubMed ID: 25144300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexavalent Chromium Generation within Naturally Structured Soils and Sediments.
    Hausladen DM; Fendorf S
    Environ Sci Technol; 2017 Feb; 51(4):2058-2067. PubMed ID: 28084730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromite oxidation by manganese oxides in subseafloor basalts and the presence of putative fossilized microorganisms.
    Ivarsson M; Broman C; Holm NG
    Geochem Trans; 2011 Jun; 12(1):5. PubMed ID: 21639896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of birnessite reactivity in dynamic anoxic/oxic environments.
    Li Q; Schild D; Pasturel M; Lützenkirchen J; Hanna K
    J Hazard Mater; 2022 Jul; 433():128739. PubMed ID: 35366449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromium(III) oxidation by three poorly-crystalline manganese(IV) oxides. 1. Chromium(III)-oxidizing capacity.
    Landrot G; Ginder-Vogel M; Livi K; Fitts JP; Sparks DL
    Environ Sci Technol; 2012 Nov; 46(21):11594-600. PubMed ID: 23050871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Mn(II) on UO2 dissolution under anoxic and oxic conditions.
    Wang Z; Tebo BM; Giammar DE
    Environ Sci Technol; 2014 May; 48(10):5546-54. PubMed ID: 24779888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rates of Cr(VI) Generation from Cr
    Pan C; Liu H; Catalano JG; Qian A; Wang Z; Giammar DE
    Environ Sci Technol; 2017 Nov; 51(21):12416-12423. PubMed ID: 29043792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite).
    Dai R; Liu J; Yu C; Sun R; Lan Y; Mao JD
    Chemosphere; 2009 Jul; 76(4):536-41. PubMed ID: 19342077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium(III) oxidation by three poorly crystalline manganese(IV) oxides. 2. Solid phase analyses.
    Landrot G; Ginder-Vogel M; Livi K; Fitts JP; Sparks DL
    Environ Sci Technol; 2012 Nov; 46(21):11601-9. PubMed ID: 23050862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromium(iii) oxidation by biogenic manganese oxides with varying structural ripening.
    Tang Y; Webb SM; Estes ER; Hansel CM
    Environ Sci Process Impacts; 2014 Sep; 16(9):2127-36. PubMed ID: 25079661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cr(VI) Formation related to Cr(III)-muscovite and birnessite interactions in ultramafic environments.
    Rajapaksha AU; Vithanage M; Ok YS; Oze C
    Environ Sci Technol; 2013 Sep; 47(17):9722-9. PubMed ID: 23952582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of δ-MnO
    Kong X; Wang Y; Ma L; Li H; Han Z
    Environ Sci Pollut Res Int; 2022 Jun; 29(30):45328-45337. PubMed ID: 35141831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of dissolved O
    Hu E; Pan S; Zhang W; Zhao X; Liao B; He F
    Environ Sci Process Impacts; 2019 Dec; 21(12):2118-2127. PubMed ID: 31667476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.