These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37922821)

  • 41. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments.
    Li B; Liao P; Xie L; Li Q; Pan C; Ning Z; Liu C
    Water Res; 2020 Aug; 181():115923. PubMed ID: 32422451
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Effect of Aeration on Mn(II) Sorbed to Clay Minerals and Its Impact on Cd Retention.
    Van Groeningen N; Christl I; Kretzschmar R
    Environ Sci Technol; 2021 Feb; 55(3):1650-1658. PubMed ID: 33444011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils.
    Rock ML; James BR; Helz GR
    Environ Sci Technol; 2001 Oct; 35(20):4054-9. PubMed ID: 11686366
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reaction of aqueous Cu-Citrate with MnO2 birnessite: characterization of Mn dissolution, oxidation products and surface interactions.
    Jefferson WA; Hu C; Liu H; Qu J
    Chemosphere; 2015 Jan; 119():1-7. PubMed ID: 25460741
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Redox Fluctuations Control the Coupled Cycling of Iron and Carbon in Tropical Forest Soils.
    Bhattacharyya A; Campbell AN; Tfaily MM; Lin Y; Kukkadapu RK; Silver WL; Nico PS; Pett-Ridge J
    Environ Sci Technol; 2018 Dec; 52(24):14129-14139. PubMed ID: 30451506
    [TBL] [Abstract][Full Text] [Related]  

  • 47. FeS-mediated mobilization and immobilization of Cr(III) in oxic aquatic systems.
    Wang T; Zhao D; Cao J; Zeng Q; Li W; Liu B; He D; Liu Y
    Water Res; 2022 Mar; 211():118077. PubMed ID: 35065338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phase transformation of Cr(VI)-adsorbed ferrihydrite in the presence of Mn(II): Fate of Mn(II) and Cr(VI).
    Ding Z; Sun G; Fu F; Ye C
    J Environ Sci (China); 2022 Mar; 113():251-259. PubMed ID: 34963533
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Yielding hydroxyl radicals in the Fenton-like reaction induced by manganese (II) oxidation determines Cd mobilization upon soil aeration in paddy soil systems.
    Wang M; Liu Y; Shi H; Li S; Chen S
    Environ Pollut; 2022 Jan; 292(Pt A):118311. PubMed ID: 34627964
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metal Adsorption Controls Stability of Layered Manganese Oxides.
    Yang P; Post JE; Wang Q; Xu W; Geiss R; McCurdy PR; Zhu M
    Environ Sci Technol; 2019 Jul; 53(13):7453-7462. PubMed ID: 31150220
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
    Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y
    Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Negative impact of oxygen molecular activation on Cr(VI) removal with core-shell Fe@Fe2O3 nanowires.
    Mu Y; Wu H; Ai Z
    J Hazard Mater; 2015 Nov; 298():1-10. PubMed ID: 25988715
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The generation of biogenic manganese oxides and its application in the removal of As(III) in groundwater.
    Liang G; Yang Y; Wu S; Jiang Y; Xu Y
    Environ Sci Pollut Res Int; 2017 Jul; 24(21):17935-17944. PubMed ID: 28620852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chromium availability in ultramafic soils from New Caledonia.
    Becquer T; Quantin C; Sicot M; Boudot JP
    Sci Total Environ; 2003 Jan; 301(1-3):251-61. PubMed ID: 12493201
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibited Cr(VI) reduction by aqueous Fe(II) under hyperalkaline conditions.
    He YT; Chen CC; Traina SJ
    Environ Sci Technol; 2004 Nov; 38(21):5535-9. PubMed ID: 15575269
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxidative dissolution of Sb
    Wu T; Cui P; Huang M; Liu C; Dang F; Wang Z; Alves ME; Zhou D; Wang Y
    Water Res; 2022 Jun; 217():118403. PubMed ID: 35429878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status.
    Tokunaga TK; Wan J; Lanzirotti A; Sutton SR; Newville M; Rao W
    Environ Sci Technol; 2007 Jun; 41(12):4326-31. PubMed ID: 17626432
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation.
    Tang Y; Zeiner CA; Santelli CM; Hansel CM
    Environ Microbiol; 2013 Apr; 15(4):1063-77. PubMed ID: 23157705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reductive transformation of birnessite by aqueous Mn(II).
    Elzinga EJ
    Environ Sci Technol; 2011 Aug; 45(15):6366-72. PubMed ID: 21675764
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.
    Shaheen SM; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):253-260. PubMed ID: 27499501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.