These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37922838)

  • 1. An efficient approach to utilize copper smelting slag: Separating nonferrous metals and reducing iron oxide at high temperature.
    Wu L; Li H; Liu K; Mei H; Xia Y; Dong Y
    Waste Manag; 2023 Dec; 172():182-191. PubMed ID: 37922838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag.
    Xiao Y; Li L; Huang M; Liu Y; Xu J; Xu Z; Lei Y
    Sci Total Environ; 2022 Sep; 838(Pt 3):156453. PubMed ID: 35660588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method for dearsenization from arsenic-bearing waste slag by selective chlorination and low-temperature volatilization.
    Xing Z; Yang H; Xue X; Jiang P
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):60145-60152. PubMed ID: 35419688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient recovery of zinc and copper from copper smelting slag (CSS) by cooperative modification with a composite medium of FeS-O
    Yu A; Wang Z; Zha S; Liu T; Yu J; Zeng G; Liu C; Deng C
    J Environ Manage; 2024 Sep; 368():122165. PubMed ID: 39128351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.
    Maweja K; Mukongo T; Mutombo I
    J Hazard Mater; 2009 May; 164(2-3):856-62. PubMed ID: 18848396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smelting reduction and kinetics analysis of magnetic iron in copper slag using waste cooking oil.
    Li B; Wang X; Wang H; Wei Y; Hu J
    Sci Rep; 2017 May; 7(1):2406. PubMed ID: 28546556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Leaching of nonferrous metals from copper-smelting slag with acidophilic microorganisms].
    Murav'ev MI; Fomchenko NV
    Prikl Biokhim Mikrobiol; 2013; 49(6):561-9. PubMed ID: 25434180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A potential industrial waste-waste co-treatment process of utilizing waste SO
    Wan X; Taskinen P; Shi J; Jokilaakso A
    J Hazard Mater; 2021 Jul; 414():125541. PubMed ID: 33677318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovering metals from flue dust produced in secondary copper smelting through a novel process combining low temperature roasting, water leaching and mechanochemical reduction.
    Chen J; Zhang W; Ma B; Che J; Xia L; Wen P; Wang C
    J Hazard Mater; 2022 May; 430():128497. PubMed ID: 35739678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the industrial symbiosis of alumina and iron/steel production: Suitability of ferroalumina as raw material in iron and steel making.
    Karamoutsos S; Tzevelekou T; Christogerou A; Grilla E; Gypakis A; Pérez Villarejo L; Mantzavinos D; Angelopoulos GN
    Waste Manag Res; 2021 Oct; 39(10):1270-1276. PubMed ID: 33594947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic study on the promotion of Ca
    He D; Yang L; Luo Y; Zhao H; Liu G; Wu Z
    Environ Sci Pollut Res Int; 2024 Apr; 31(20):29836-29858. PubMed ID: 38592627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of copper converter slag with deep eutectic solvent as green chemical.
    Topçu MA; Rüşen A; Küçük Ö
    Waste Manag; 2021 Aug; 132():64-73. PubMed ID: 34314950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron slag/activated carbon-electrokinetic system with anolyte recycling for single and mixture heavy metals remediation.
    Hamdi FM; Altaee A; Alsaka L; Ibrar I; Al-Ejji M; Zhou J; Samal AK; Hawari AH
    Sci Total Environ; 2024 Jun; 930():172516. PubMed ID: 38636874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recoveries of rare elements Ga, Ge, In and Sn from waste electric and electronic equipment through secondary copper smelting.
    Avarmaa K; Yliaho S; Taskinen P
    Waste Manag; 2018 Jan; 71():400-410. PubMed ID: 29032002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal Effect of Basic Oxygen Furnace Slag Porous Asphalt Concrete on Copper and Zinc in Road Runoff.
    Yang T; Chen M; Wu S
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanadium extraction from steel slag: Generation, recycling and management.
    Yang MQ; Yang JY
    Environ Pollut; 2024 Feb; 343():123126. PubMed ID: 38092336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics Evaluation and Verification of High-Sulfur Copper Slag Composite Agglomerate in Oxidation-Roasting-Separation-Leaching Process.
    Zhao K; Zhang X; Zhao W; Guo H; Zhang Q; Zhen C
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steel slag quality control for road construction aggregates and its environmental impact: case study of Vietnamese steel industry-leaching of heavy metals from steel-making slag.
    Nguyen LH; Nguyen TD; Tran TVN; Nguyen DL; Tran HS; Nguyen TL; Nguyen TH; Nguyen HG; Nguyen TP; Nguyen NT; Isawa T; Ta Y; Sato R
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):41983-41991. PubMed ID: 34564812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach for recovery of iron from copper slag using calcium salts.
    Bhatti SA; Qiao XC
    Environ Sci Pollut Res Int; 2024 Jul; 31(35):48264-48278. PubMed ID: 39020146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Bioregeneration of the solutions obtained during the leaching of nonferrous metals from waste slag by acidophilic microorganisms].
    Fomchenko NV; Murav'ev MI; Kondrat'eva TF
    Prikl Biokhim Mikrobiol; 2014; 50(2):193-6. PubMed ID: 25272738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.