BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37922889)

  • 1. The inhibition of inner mitochondrial fusion in hepatocytes reduces non-alcoholic fatty liver and improves metabolic profile during obesity by modulating bile acid conjugation.
    Da Dalt L; Moregola A; Svecla M; Pedretti S; Fantini F; Ronzio M; Uboldi P; Dolfini D; Donetti E; Baragetti A; Mitro N; Scorrano L; Norata GD
    Cardiovasc Res; 2024 Feb; 119(18):2917-2929. PubMed ID: 37922889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism.
    Duparc T; Plovier H; Marrachelli VG; Van Hul M; Essaghir A; Ståhlman M; Matamoros S; Geurts L; Pardo-Tendero MM; Druart C; Delzenne NM; Demoulin JB; van der Merwe SW; van Pelt J; Bäckhed F; Monleon D; Everard A; Cani PD
    Gut; 2017 Apr; 66(4):620-632. PubMed ID: 27196572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-alcoholic fatty liver disease in mice with hepatocyte-specific deletion of mitochondrial fission factor.
    Takeichi Y; Miyazawa T; Sakamoto S; Hanada Y; Wang L; Gotoh K; Uchida K; Katsuhara S; Sakamoto R; Ishihara T; Masuda K; Ishihara N; Nomura M; Ogawa Y
    Diabetologia; 2021 Sep; 64(9):2092-2107. PubMed ID: 34052855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STARD1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway.
    Conde de la Rosa L; Garcia-Ruiz C; Vallejo C; Baulies A; Nuñez S; Monte MJ; Marin JJG; Baila-Rueda L; Cenarro A; Civeira F; Fuster J; Garcia-Valdecasas JC; Ferrer J; Karin M; Ribas V; Fernandez-Checa JC
    J Hepatol; 2021 Jun; 74(6):1429-1441. PubMed ID: 33515644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of bile acid composition in high fat diet-induced nonalcoholic fatty liver disease in obese diabetic rats.
    Nakade Y; Kitano R; Sakamoto K; Kimoto S; Yamauchi T; Inoue T; Kobayashi Y; Ohashi T; Sumida Y; Ito K; Yoneda M
    PLoS One; 2021; 16(2):e0247303. PubMed ID: 33626072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Network Involving Gut Microbiota, Circulating Bile Acids, and Hepatic Metabolism Genes That Protects Against Non-Alcoholic Fatty Liver Disease.
    Petrov PD; García-Mediavilla MV; Guzmán C; Porras D; Nistal E; Martínez-Flórez S; Castell JV; González-Gallego J; Sánchez-Campos S; Jover R
    Mol Nutr Food Res; 2019 Oct; 63(20):e1900487. PubMed ID: 31322321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary bile acids supplementation improves the growth performance and alleviates fatty liver in broilers fed a high-fat diet via improving the gut microbiota.
    Hu D; Hou M; Song P; Chen Q; Feng Y; Wu X; Ni Y
    Poult Sci; 2024 Feb; 103(2):103270. PubMed ID: 38056054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNF31 alleviates liver steatosis by promoting p53/BNIP3-related mitophagy in hepatocytes.
    Chen Y; Yang F; Shi Y; Sheng J; Wang Y; Zhang L; Zhou J; Jin Y; Yan Y
    Free Radic Biol Med; 2024 Jul; 219():163-179. PubMed ID: 38615890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the Hypoxia Inducible Factor 1α Subunit Pathway in Steatotic Liver Contributes to Formation of Cholesterol Gallstones.
    Asai Y; Yamada T; Tsukita S; Takahashi K; Maekawa M; Honma M; Ikeda M; Murakami K; Munakata Y; Shirai Y; Kodama S; Sugisawa T; Chiba Y; Kondo Y; Kaneko K; Uno K; Sawada S; Imai J; Nakamura Y; Yamaguchi H; Tanaka K; Sasano H; Mano N; Ueno Y; Shimosegawa T; Katagiri H
    Gastroenterology; 2017 May; 152(6):1521-1535.e8. PubMed ID: 28088462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term high-fat diet feeding of mice suppresses catecholamine-stimulated Ca
    Brumer RP; Corrêa-Velloso JC; Thomas SJ; Sandiford OA; Thomas AP; Bartlett PJ
    J Physiol; 2023 Apr; 601(8):1383-1405. PubMed ID: 36864773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaperonin counteracts diet-induced non-alcoholic fatty liver disease by aiding sirtuin 3 in the control of fatty acid oxidation.
    Weng SW; Wu JC; Shen FC; Chang YH; Su YJ; Lian WS; Tai MH; Su CH; Chuang JH; Lin TK; Liou CW; Chu TH; Kao YH; Wang FS; Wang PW
    Diabetologia; 2023 May; 66(5):913-930. PubMed ID: 36692509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of G protein-coupled receptor kinase 2 (GRK2) in the development of non-alcoholic steatosis and steatohepatitis in mice and humans.
    Cruces-Sande M; Vila-Bedmar R; Arcones AC; González-Rodríguez Á; Rada P; Gutiérrez-de-Juan V; Vargas-Castrillón J; Iruzubieta P; Sánchez-González C; Formentini L; Crespo J; García-Monzón C; Martínez-Chantar ML; Valverde ÁM; Mayor F; Murga C
    Biochim Biophys Acta Mol Basis Dis; 2018 Dec; 1864(12):3655-3667. PubMed ID: 30261289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice.
    Rao A; Kosters A; Mells JE; Zhang W; Setchell KD; Amanso AM; Wynn GM; Xu T; Keller BT; Yin H; Banton S; Jones DP; Wu H; Dawson PA; Karpen SJ
    Sci Transl Med; 2016 Sep; 8(357):357ra122. PubMed ID: 27655848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theaphenon E prevents fatty liver disease and increases CD4+ T cell survival in mice fed a high-fat diet.
    Coia H; Ma N; Hou Y; Permaul E; Berry DL; Cruz MI; Pannkuk E; Girgis M; Zhu Z; Lee Y; Rodriquez O; Cheema A; Chung FL
    Clin Nutr; 2021 Jan; 40(1):110-119. PubMed ID: 32439267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced liver steatosis accompanies an increase in hepatic inflammation, colonic, secondary bile acids and Lactobacillaceae/Lachnospiraceae bacteria in C57BL/6 mice fed a high-fat diet.
    Zeng H; Larson KJ; Cheng WH; Bukowski MR; Safratowich BD; Liu Z; Hakkak R
    J Nutr Biochem; 2020 Apr; 78():108336. PubMed ID: 32004929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of receptor-interacting protein kinase 1 improves experimental non-alcoholic fatty liver disease.
    Majdi A; Aoudjehane L; Ratziu V; Islam T; Afonso MB; Conti F; Mestiri T; Lagouge M; Foufelle F; Ballenghien F; Ledent T; Moldes M; Cadoret A; Fouassier L; Delaunay JL; Aït-Slimane T; Courtois G; Fève B; Scatton O; Prip-Buus C; Rodrigues CMP; Housset C; Gautheron J
    J Hepatol; 2020 Apr; 72(4):627-635. PubMed ID: 31760070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between 12α-hydroxylated bile acids and hepatic steatosis in rats fed a high-fat diet.
    Hori S; Abe T; Lee DG; Fukiya S; Yokota A; Aso N; Shirouchi B; Sato M; Ishizuka S
    J Nutr Biochem; 2020 Sep; 83():108412. PubMed ID: 32534424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatocyte-specific PKCβ deficiency protects against high-fat diet-induced nonalcoholic hepatic steatosis.
    Shu Y; Hassan F; Coppola V; Baskin KK; Han X; Mehta NK; Ostrowski MC; Mehta KD
    Mol Metab; 2021 Feb; 44():101133. PubMed ID: 33271332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low production of 12α-hydroxylated bile acids prevents hepatic steatosis in Cyp2c70
    Li R; Palmiotti A; de Vries HD; Hovingh MV; Koehorst M; Mulder NL; Zhang Y; Kats K; Bloks VW; Fu J; Verkade HJ; de Boer JF; Kuipers F
    J Lipid Res; 2021; 62():100134. PubMed ID: 34626589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the fecal microbiome and metabolome by resistant dextrin ameliorates hepatic steatosis and mitochondrial abnormalities in mice.
    Zhang Z; Chen X; Cui B
    Food Funct; 2021 May; 12(10):4504-4518. PubMed ID: 33885128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.