BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37923083)

  • 1. Automated measurement of transepithelial electrical resistance (TEER) in 96-well transwells using ECIS TEER96: Single and multiple time point assessments.
    Schimetz J; Shah P; Keese C; Dehnert C; Detweiler M; Michael S; Toniatti-Yanulavich C; Xu X; Padilha EC
    SLAS Technol; 2024 Feb; 29(1):100116. PubMed ID: 37923083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity and Validation of Porous Membrane Electrical Cell Substrate Impedance Spectroscopy (PM-ECIS) for Measuring Endothelial Barrier Properties.
    Ugodnikov A; Chebotarev O; Persson H; Simmons CA
    ACS Biomater Sci Eng; 2024 Jun; ():. PubMed ID: 38943620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct quantification of transendothelial electrical resistance in organs-on-chips.
    van der Helm MW; Odijk M; Frimat JP; van der Meer AD; Eijkel JCT; van den Berg A; Segerink LI
    Biosens Bioelectron; 2016 Nov; 85():924-929. PubMed ID: 27315517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of transepithelial electrical resistance (TEER) are affected by junctional length in immature epithelial monolayers.
    Felix K; Tobias S; Jan H; Nicolas S; Michael M
    Histochem Cell Biol; 2021 Dec; 156(6):609-616. PubMed ID: 34459960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transepithelial electrical resistance is not a reliable measurement of the Caco-2 monolayer integrity in Transwell.
    Mukherjee T; Squillantea E; Gillespieb M; Shao J
    Drug Deliv; 2004; 11(1):11-8. PubMed ID: 15168786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TEER measurement techniques for in vitro barrier model systems.
    Srinivasan B; Kolli AR; Esch MB; Abaci HE; Shuler ML; Hickman JJ
    J Lab Autom; 2015 Apr; 20(2):107-26. PubMed ID: 25586998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature corrected transepithelial electrical resistance (TEER) measurement to quantify rapid changes in paracellular permeability.
    Blume LF; Denker M; Gieseler F; Kunze T
    Pharmazie; 2010 Jan; 65(1):19-24. PubMed ID: 20187574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of Transepithelial Electrical Resistance in Mechanisms of Retinal Pigment Epithelial Barrier and Retinal Disorders.
    Wang M; Li H; Wang F
    Discov Med; 2022; 34(171):19-24. PubMed ID: 36274257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rethinking of TEER measurement reporting for epithelial cells grown on permeable inserts.
    Karakocak BB; Keshavan S; Gunasingam G; Angeloni S; Auderset A; Petri-Fink A; Rothen-Rutishauser B
    Eur J Pharm Sci; 2023 Sep; 188():106511. PubMed ID: 37385303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of Transendothelial Electrical Resistance in Blood-Brain Barrier Endothelial Cells.
    Waithe OY; Peng X; Childs EW; Tharakan B
    Methods Mol Biol; 2024; 2711():199-203. PubMed ID: 37776459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online monitoring of transepithelial electrical resistance (TEER) in an apparatus for combined dissolution and permeation testing.
    Muendoerfer M; Schaefer UF; Koenig P; Walk JS; Loos P; Balbach S; Eichinger T; Lehr CM
    Int J Pharm; 2010 Jun; 392(1-2):134-40. PubMed ID: 20347022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High throughput transepithelial electrical resistance (TEER) measurements on perfused membrane-free epithelia.
    Nicolas A; Schavemaker F; Kosim K; Kurek D; Haarmans M; Bulst M; Lee K; Wegner S; Hankemeier T; Joore J; Domansky K; Lanz HL; Vulto P; Trietsch SJ
    Lab Chip; 2021 May; 21(9):1676-1685. PubMed ID: 33861225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Usefulness of a novel Caco-2 cell perfusion system. I. In vitro prediction of the absorption potential of passively diffused compounds.
    Masungi C; Borremans C; Willems B; Mensch J; Van Dijck A; Augustijns P; Brewster ME; Noppe M
    J Pharm Sci; 2004 Oct; 93(10):2507-21. PubMed ID: 15349960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems.
    Odijk M; van der Meer AD; Levner D; Kim HJ; van der Helm MW; Segerink LI; Frimat JP; Hamilton GA; Ingber DE; van den Berg A
    Lab Chip; 2015 Feb; 15(3):745-52. PubMed ID: 25427650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring Intestinal Organoid-Derived Monolayer Barrier Functions with Electric Cell-Substrate Impedance Sensing (ECIS).
    Ouahoud S; Giugliano FP; Muncan V
    Bio Protoc; 2024 Mar; 14(5):e4947. PubMed ID: 38464939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous Membrane Electrical Cell-Substrate Impedance Spectroscopy for Versatile Assessment of Biological Barriers In Vitro.
    Chebotarev O; Ugodnikov A; Simmons CA
    ACS Appl Bio Mater; 2024 Mar; 7(3):2000-2011. PubMed ID: 38447196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Simple Approach to Perform TEER Measurements Using a Self-Made Volt-Amperemeter with Programmable Output Frequency.
    Theile M; Wiora L; Russ D; Reuter J; Ishikawa H; Schwerk C; Schroten H; Mogk S
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31633685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood-brain barrier permeability.
    Madgula VL; Avula B; Reddy V L N; Khan IA; Khan SI
    Planta Med; 2007 Apr; 73(4):330-5. PubMed ID: 17372866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of hypoxia/reoxygenation on the cellular function of intestinal epithelial cells.
    Xu DZ; Lu Q; Kubicka R; Deitch EA
    J Trauma; 1999 Feb; 46(2):280-5. PubMed ID: 10029034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.