BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 37923108)

  • 1. A review on high-pressure heterogeneous catalytic processes for gas-phase CO
    Villora-Picó JJ; González-Arias J; Pastor-Pérez L; Odriozola JA; Reina TR
    Environ Res; 2024 Jan; 240(Pt 1):117520. PubMed ID: 37923108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Application of Core-Shell Nanostructured Catalysts for CO
    Rusdan NA; Timmiati SN; Isahak WNRW; Yaakob Z; Lim KL; Khaidar D
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical Reverse Shift: Sustainable CO
    Thor Wismann S; Larsen KE; Mølgaard Mortensen P
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202109696. PubMed ID: 34931745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ceria-Based Materials in Hydrogenation and Reforming Reactions for CO
    Boaro M; Colussi S; Trovarelli A
    Front Chem; 2019; 7():28. PubMed ID: 30838198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Conversion of Carbon Dioxide to Methane over Ceria- and Alumina-Supported Nickel Catalysts for Biogas Valorization.
    Gac W; Zawadzki W; Rotko M; Greluk M; Słowik G; Pennemann H; Neuberg S; Zapf R; Kolb G
    Chempluschem; 2021 May; 86(6):889-903. PubMed ID: 34133083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methanol Synthesis from CO
    Guil-López R; Mota N; Llorente J; Millán E; Pawelec B; Fierro JLG; Navarro RM
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31779127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO
    Das S; Pérez-Ramírez J; Gong J; Dewangan N; Hidajat K; Gates BC; Kawi S
    Chem Soc Rev; 2020 May; 49(10):2937-3004. PubMed ID: 32407432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Dioxide Reduction with Hydrogen on Fe, Co Supported Alumina and Carbon Catalysts under Supercritical Conditions.
    Bogdan VI; Koklin AE; Kustov AL; Pokusaeva YA; Bogdan TV; Kustov LM
    Molecules; 2021 May; 26(10):. PubMed ID: 34068056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Zr loading into In
    Portillo A; Ateka A; Ereña J; Bilbao J; Aguayo AT
    J Environ Manage; 2022 Aug; 316():115329. PubMed ID: 35658264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.
    Zhang C; Jun KW; Ha KS; Lee YJ; Kang SC
    Environ Sci Technol; 2014 Jul; 48(14):8251-7. PubMed ID: 24933030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methanol as a Hydrogen Carrier: Kinetic and Thermodynamic Drivers for its CO
    Frei MS; Mondelli C; Short MIM; Pérez-Ramírez J
    ChemSusChem; 2020 Dec; 13(23):6330-6337. PubMed ID: 32706140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of Cu/ZnO Nanosheets on Electrospun Al
    Maor II; Heyte S; Elishav O; Mann-Lahav M; Thuriot-Roukos J; Paul S; Grader GS
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From Solar Energy to Fuels: Recent Advances in Light-Driven C
    Chen G; Waterhouse GIN; Shi R; Zhao J; Li Z; Wu LZ; Tung CH; Zhang T
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17528-17551. PubMed ID: 30825253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating photo-thermal CO
    Lorber K; Djinović P
    iScience; 2022 Apr; 25(4):104107. PubMed ID: 35378856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.
    Li S; Gong J
    Chem Soc Rev; 2014 Nov; 43(21):7245-56. PubMed ID: 25182070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic and multiscale aspects of thermo-catalytic CO
    Alam MI; Cheula R; Moroni G; Nardi L; Maestri M
    Catal Sci Technol; 2021 Oct; 11(20):6601-6629. PubMed ID: 34745556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry.
    Li P; Yu F; Altaf N; Zhu M; Li J; Dai B; Wang Q
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29385064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane.
    Kawi S; Kathiraser Y; Ni J; Oemar U; Li Z; Saw ET
    ChemSusChem; 2015 Nov; 8(21):3556-75. PubMed ID: 26440576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.