These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37923204)

  • 1. Detection of carbon nanotubes in bovine raw milk through Fourier transform Raman spectroscopy.
    Nunes PP; Almeida MR; Pacheco FG; Fantini C; Furtado CA; Ladeira LO; Jorio A; Júnior APM; Santos RL; Borges ÁM
    J Dairy Sci; 2024 May; 107(5):2681-2689. PubMed ID: 37923204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk.
    Yazgan NN; Genis HE; Bulat T; Topcu A; Durna S; Yetisemiyen A; Boyaci IH
    J Sci Food Agric; 2020 Oct; 100(13):4756-4765. PubMed ID: 32458436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous detection for adulterations of maltodextrin, sodium carbonate, and whey in raw milk using Raman spectroscopy and chemometrics.
    Tian H; Chen S; Li D; Lou X; Chen C; Yu H
    J Dairy Sci; 2022 Sep; 105(9):7242-7252. PubMed ID: 35863924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of milk by FT-Raman spectroscopy.
    Mazurek S; Szostak R; Czaja T; Zachwieja A
    Talanta; 2015 Jun; 138():285-289. PubMed ID: 25863403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance comparison of UV and FT-Raman spectroscopy in the determination of conjugated linoleic acids in cow milk fat.
    Bernuy B; Meurens M; Mignolet E; Larondelle Y
    J Agric Food Chem; 2008 Feb; 56(4):1159-63. PubMed ID: 18247563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting blood β-hydroxybutyrate using milk Fourier transform infrared spectrum, milk composition, and producer-reported variables with multiple linear regression, partial least squares regression, and artificial neural network.
    Pralle RS; Weigel KW; White HM
    J Dairy Sci; 2018 May; 101(5):4378-4387. PubMed ID: 29477523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of milk odd- and branched-chain fatty acids using Fourier transform (FT)-Raman spectroscopy.
    Stefanov I; Baeten V; Abbas O; Colman E; Vlaeminck B; De Baets B; Fievez V
    J Agric Food Chem; 2010 Oct; 58(20):10804-11. PubMed ID: 20886895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination between conventional and omega-3 fatty acids enriched eggs by FT-Raman spectroscopy and chemometric tools.
    de Oliveira Mendes T; Porto BLS; Almeida MR; Fantini C; Sena MM
    Food Chem; 2019 Feb; 273():144-150. PubMed ID: 30292360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA.
    Botelho BG; Reis N; Oliveira LS; Sena MM
    Food Chem; 2015 Aug; 181():31-7. PubMed ID: 25794717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of milk Fourier-transform mid-infrared spectroscopy to diagnose pregnancy and determine spectral regional associations with pregnancy in US dairy cows.
    Khanal P; Tempelman RJ
    J Dairy Sci; 2022 Apr; 105(4):3209-3221. PubMed ID: 35151475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern recognition-based Raman spectroscopy for non-destructive detection of pomegranates during maturity.
    Khodabakhshian R; Abbaspour-Fard MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 231():118127. PubMed ID: 32058918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of genetic algorithm and multivariate methods for the detection and measurement of milk-surfactant adulteration by attenuated total reflection and near-infrared spectroscopy.
    Hosseini E; Ghasemi JB; Daraei B; Asadi G; Adib N
    J Sci Food Agric; 2021 May; 101(7):2696-2703. PubMed ID: 33073373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the discrimination between facial creams of different brands using Raman Spectroscopy and partial least squares discriminant analysis for forensic application.
    Asri MNM; Verma R; Ibrahim MH; Nor NAM; Sharma V; Ismail D
    Sci Justice; 2021 Nov; 61(6):687-696. PubMed ID: 34802642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of milk fat authenticity in ultra-filtered white cheese by using Raman spectroscopy with multivariate data analysis.
    Genis DO; Sezer B; Durna S; Boyaci IH
    Food Chem; 2021 Jan; 336():127699. PubMed ID: 32768905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk.
    Nicolaou N; Xu Y; Goodacre R
    Anal Chem; 2011 Jul; 83(14):5681-7. PubMed ID: 21639098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection Method of Falsified Medicines by Using a Low-Cost Raman Scattering Spectrometer Combined with Soft Independent Modeling of Class Analogy and Partial Least Squares Discriminant Analysis.
    Sanada T; Yoshida N; Kimura K; Tsuboi H
    Biol Pharm Bull; 2021; 44(5):691-700. PubMed ID: 33952825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Standing Gold Nanorod Arrays as Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk.
    Alsammarraie FK; Lin M
    J Agric Food Chem; 2017 Jan; 65(3):666-674. PubMed ID: 28080039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Raman exposure time on the quantitative and discriminant analyses of carotenoid concentrations in intact tomatoes.
    Hara R; Ishigaki M; Ozaki Y; Ahamed T; Noguchi R; Miyamoto A; Genkawa T
    Food Chem; 2021 Oct; 360():129896. PubMed ID: 33989876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesized Au NPs@silica composite as surface-enhanced Raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk.
    Xu Y; Kutsanedzie FYH; Hassan MM; Li H; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():405-412. PubMed ID: 30170175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of individual fatty acids in bovine milk by infrared spectroscopy and chemometrics: understanding predictions of highly collinear reference variables.
    Eskildsen CE; Rasmussen MA; Engelsen SB; Larsen LB; Poulsen NA; Skov T
    J Dairy Sci; 2014 Dec; 97(12):7940-51. PubMed ID: 25306267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.