These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37923204)
21. Potential biomonitoring of atmospheric carbon dioxide in Coffea arabica leaves using near-infrared spectroscopy and partial least squares discriminant analysis. Tormena CD; Marcheafave GG; Pauli ED; Bruns RE; Scarminio IS Environ Sci Pollut Res Int; 2019 Oct; 26(29):30356-30364. PubMed ID: 31432374 [TBL] [Abstract][Full Text] [Related]
22. FT-Raman and chemometric tools for rapid determination of quality parameters in milk powder: Classification of samples for the presence of lactose and fraud detection by addition of maltodextrin. Rodrigues Júnior PH; de Sá Oliveira K; de Almeida CE; De Oliveira LF; Stephani R; Pinto Mda S; de Carvalho AF; Perrone ÍT Food Chem; 2016 Apr; 196():584-8. PubMed ID: 26593531 [TBL] [Abstract][Full Text] [Related]
23. Screening for Adulterants in Liquid Milk Using a Portable Raman Miniature Spectrometer with Immersion Probe. Nieuwoudt MK; Holroyd SE; McGoverin CM; Simpson MC; Williams DE Appl Spectrosc; 2017 Feb; 71(2):308-312. PubMed ID: 27329831 [TBL] [Abstract][Full Text] [Related]
24. Classification and quantitation of milk powder by near-infrared spectroscopy and mutual information-based variable selection and partial least squares. Chen H; Tan C; Lin Z; Wu T Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():183-189. PubMed ID: 28810180 [TBL] [Abstract][Full Text] [Related]
25. Au nanogap SERS substrate for the carbaryl pesticide determination in juice and milk using chemomterics. Joshi R; Adhikari S; Pil Son J; Jang Y; Lee D; Cho BK Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122734. PubMed ID: 37080052 [TBL] [Abstract][Full Text] [Related]
26. Analysis of spreadable cheese by Raman spectroscopy and chemometric tools. Oliveira Kde S; Callegaro Lde S; Stephani R; Almeida MR; de Oliveira LF Food Chem; 2016 Mar; 194():441-6. PubMed ID: 26471577 [TBL] [Abstract][Full Text] [Related]
27. [Discriminant analysis of raw milk adulterated with botanical filling material using near infrared spectroscopy]. Li L; Ding W Guang Pu Xue Yu Guang Pu Fen Xi; 2010 May; 30(5):1238-42. PubMed ID: 20672609 [TBL] [Abstract][Full Text] [Related]
28. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Chen X; Tang M; Liu Y; Huang J; Liu Z; Tian H; Zheng Y; de la Chapelle ML; Zhang Y; Fu W Mikrochim Acta; 2019 Jan; 186(2):102. PubMed ID: 30637528 [TBL] [Abstract][Full Text] [Related]
29. Assessment of physico-chemical traits related to eating quality of young dairy bull beef at different ageing times using Raman spectroscopy and chemometrics. Nian Y; Zhao M; O'Donnell CP; Downey G; Kerry JP; Allen P Food Res Int; 2017 Sep; 99(Pt 1):778-789. PubMed ID: 28784544 [TBL] [Abstract][Full Text] [Related]
30. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data. Ferragina A; de los Campos G; Vazquez AI; Cecchinato A; Bittante G J Dairy Sci; 2015 Nov; 98(11):8133-51. PubMed ID: 26387015 [TBL] [Abstract][Full Text] [Related]
31. [Application of kernel orthogonal projection to latent structure discriminant analysis in the discrimination of adulterated milk]. Liu R; Yang RJ; Miao J; Xu KX Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Aug; 33(8):2083-6. PubMed ID: 24159851 [TBL] [Abstract][Full Text] [Related]
32. Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein-nanotube composite biomaterials. Voge CM; Johns J; Raghavan M; Morris MD; Stegemann JP J Biomed Mater Res A; 2013 Jan; 101(1):231-8. PubMed ID: 22865813 [TBL] [Abstract][Full Text] [Related]
33. Classification of frankfurters by FT-Raman spectroscopy and chemometric methods. Campos Nda S; Oliveira KS; Almeida MR; Stephani R; de Oliveira LF Molecules; 2014 Nov; 19(11):18980-92. PubMed ID: 25412044 [TBL] [Abstract][Full Text] [Related]
34. Diagnosing the pregnancy status of dairy cows: How useful is milk mid-infrared spectroscopy? Delhez P; Ho PN; Gengler N; Soyeurt H; Pryce JE J Dairy Sci; 2020 Apr; 103(4):3264-3274. PubMed ID: 32037165 [TBL] [Abstract][Full Text] [Related]
35. Detection of low numbers of bacterial cells in a pharmaceutical drug product using Raman spectroscopy and PLS-DA multivariate analysis. Grosso RA; Walther AR; Brunbech E; Sørensen A; Schebye B; Olsen KE; Qu H; Hedegaard MAB; Arnspang EC Analyst; 2022 Jul; 147(15):3593-3603. PubMed ID: 35822546 [TBL] [Abstract][Full Text] [Related]
36. The study of the interaction mechanism between bovine serum albumin and single-walled carbon nanotubes depending on their diameter and concentration in solid nanocomposites by vibrational spectroscopy. Gerasimenko AY; Ten GN; Ryabkin DI; Shcherbakova NE; Morozova EA; Ichkitidze LP Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117682. PubMed ID: 31672377 [TBL] [Abstract][Full Text] [Related]
37. Prediction of blood β-hydroxybutyrate content and occurrence of hyperketonemia in early-lactation, pasture-grazed dairy cows using milk infrared spectra. Bonfatti V; Turner SA; Kuhn-Sherlock B; Luke TDW; Ho PN; Phyn CVC; Pryce JE J Dairy Sci; 2019 Jul; 102(7):6466-6476. PubMed ID: 31079906 [TBL] [Abstract][Full Text] [Related]
38. Fast discrimination of bacteria using a filter paper-based SERS platform and PLS-DA with uncertainty estimation. Villa JEL; Quiñones NR; Fantinatti-Garboggini F; Poppi RJ Anal Bioanal Chem; 2019 Jan; 411(3):705-713. PubMed ID: 30450510 [TBL] [Abstract][Full Text] [Related]