These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 37923228)
1. Engineered co-culture for consolidated production of phenylpropanoids directly from aromatic-rich biomass. Chacόn M; Percival E; Bugg TDH; Dixon N Bioresour Technol; 2024 Jan; 391(Pt A):129935. PubMed ID: 37923228 [TBL] [Abstract][Full Text] [Related]
2. Efficient bioconversion of raspberry ketone in Escherichia coli using fatty acids feedstocks. Chang C; Liu B; Bao Y; Tao Y; Liu W Microb Cell Fact; 2021 Mar; 20(1):68. PubMed ID: 33706766 [TBL] [Abstract][Full Text] [Related]
3. Sustainable biosynthetic pathways to value-added bioproducts from hydroxycinnamic acids. Tramontina R; Ciancaglini I; Roman EKB; Chacón MG; Corrêa TLR; Dixon N; Bugg TDH; Squina FM Appl Microbiol Biotechnol; 2023 Jul; 107(13):4165-4185. PubMed ID: 37212882 [TBL] [Abstract][Full Text] [Related]
4. Innovative approaches for amino acid production via consolidated bioprocessing of agricultural biomass. Chu PH; Jenol MA; Phang LY; Ibrahim MF; Purkan P; Hadi S; Abd-Aziz S Environ Sci Pollut Res Int; 2024 May; 31(23):33303-33324. PubMed ID: 38710845 [TBL] [Abstract][Full Text] [Related]
5. Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Weimer PJ; Russell JB; Muck RE Bioresour Technol; 2009 Nov; 100(21):5323-31. PubMed ID: 19560344 [TBL] [Abstract][Full Text] [Related]
6. Removal and upgrading of lignocellulosic fermentation inhibitors by in situ biocatalysis and liquid-liquid extraction. Tomek KJ; Saldarriaga CR; Velasquez FP; Liu T; Hodge DB; Whitehead TA Biotechnol Bioeng; 2015 Mar; 112(3):627-32. PubMed ID: 25311910 [TBL] [Abstract][Full Text] [Related]
7. Bioconversion of distillers' grains hydrolysates to advanced biofuels by an Escherichia coli co-culture. Liu F; Wu W; Tran-Gyamfi MB; Jaryenneh JD; Zhuang X; Davis RW Microb Cell Fact; 2017 Nov; 16(1):192. PubMed ID: 29121935 [TBL] [Abstract][Full Text] [Related]
8. Bioproduction of 4-vinylphenol from corn cob alkaline hydrolyzate in two-phase extractive fermentation using free or immobilized recombinant E. coli expressing pad gene. Salgado JM; Rodríguez-Solana R; Curiel JA; de Las Rivas B; Muñoz R; Domínguez JM Enzyme Microb Technol; 2014 May; 58-59():22-8. PubMed ID: 24731821 [TBL] [Abstract][Full Text] [Related]
9. Escherichia coli modular coculture system for resveratrol glucosides production. Thuan NH; Trung NT; Cuong NX; Van Cuong D; Van Quyen D; Malla S World J Microbiol Biotechnol; 2018 May; 34(6):75. PubMed ID: 29796765 [TBL] [Abstract][Full Text] [Related]
10. Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production. Verbeke TJ; Zhang X; Henrissat B; Spicer V; Rydzak T; Krokhin OV; Fristensky B; Levin DB; Sparling R PLoS One; 2013; 8(3):e59362. PubMed ID: 23555660 [TBL] [Abstract][Full Text] [Related]
11. Lignocellulosic ethanol: Technology design and its impact on process efficiency. Paulova L; Patakova P; Branska B; Rychtera M; Melzoch K Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1091-107. PubMed ID: 25485865 [TBL] [Abstract][Full Text] [Related]
12. A constitutive expression system for cellulase secretion in Escherichia coli and its use in bioethanol production. Munjal N; Jawed K; Wajid S; Yazdani SS PLoS One; 2015; 10(3):e0119917. PubMed ID: 25768292 [TBL] [Abstract][Full Text] [Related]
13. Engineered microbial host selection for value-added bioproducts from lignocellulose. de Paula RG; Antoniêto ACC; Ribeiro LFC; Srivastava N; O'Donovan A; Mishra PK; Gupta VK; Silva RN Biotechnol Adv; 2019 Nov; 37(6):107347. PubMed ID: 30771467 [TBL] [Abstract][Full Text] [Related]
14. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. Mondala AH J Ind Microbiol Biotechnol; 2015 Apr; 42(4):487-506. PubMed ID: 25557737 [TBL] [Abstract][Full Text] [Related]
15. Accessing p-Hydroxycinnamic Acids: Chemical Synthesis, Biomass Recovery, or Engineered Microbial Production? Flourat AL; Combes J; Bailly-Maitre-Grand C; Magnien K; Haudrechy A; Renault JH; Allais F ChemSusChem; 2021 Jan; 14(1):118-129. PubMed ID: 33058548 [TBL] [Abstract][Full Text] [Related]
16. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture. Yuan SF; Yi X; Johnston TG; Alper HS Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999 [TBL] [Abstract][Full Text] [Related]
17. Semi-hydrolysate of paper pulp without pretreatment enables a consolidated fermentation system with in situ product recovery for the production of butanol. Zhao T; Yasuda K; Tashiro Y; Darmayanti RF; Sakai K; Sonomoto K Bioresour Technol; 2019 Apr; 278():57-65. PubMed ID: 30677699 [TBL] [Abstract][Full Text] [Related]
18. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Kumar R; Singh S; Singh OV J Ind Microbiol Biotechnol; 2008 May; 35(5):377-391. PubMed ID: 18338189 [TBL] [Abstract][Full Text] [Related]
19. De novo biosynthesis of p-coumaric acid and caffeic acid from carboxymethyl-cellulose by microbial co-culture strategy. Cai M; Liu J; Song X; Qi H; Li Y; Wu Z; Xu H; Qiao M Microb Cell Fact; 2022 May; 21(1):81. PubMed ID: 35538542 [TBL] [Abstract][Full Text] [Related]
20. Consolidated bioprocesses for efficient bioconversion of palm biomass wastes into biodiesel feedstocks by oleaginous fungi and yeasts. Intasit R; Cheirsilp B; Louhasakul Y; Boonsawang P Bioresour Technol; 2020 Nov; 315():123893. PubMed ID: 32736320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]