BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37923248)

  • 1. Depleting LCAT Aggravates Atherosclerosis in LDLR-deficient Hamster with Reduced LDL-Cholesterol Level.
    Lin X; Zhang W; Yang C; Ma P; He K; Chen G; Tao Y; Yan H; Yang Z; Zhang L; Fan J; Cui Q; Huang W; Liu G; Xian X; Wang Y
    J Adv Res; 2023 Nov; ():. PubMed ID: 37923248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LCAT modulates atherogenic plasma lipoproteins and the extent of atherosclerosis only in the presence of normal LDL receptors in transgenic rabbits.
    Brousseau ME; Kauffman RD; Herderick EE; Demosky SJ; Evans W; Marcovina S; Santamarina-Fojo S; Brewer HB; Hoeg JM
    Arterioscler Thromb Vasc Biol; 2000 Feb; 20(2):450-8. PubMed ID: 10669643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous Atherosclerosis in Aged LCAT-Deficient Hamsters With Enhanced Oxidative Stress-Brief Report.
    Guo M; Liu Z; Xu Y; Ma P; Huang W; Gao M; Wang Y; Liu G; Xian X
    Arterioscler Thromb Vasc Biol; 2020 Dec; 40(12):2829-2836. PubMed ID: 32998519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of LCAT activity in the golden Syrian hamster elicits pro-atherogenic dyslipidemia and enhanced atherosclerosis.
    Dong Z; Shi H; Zhao M; Zhang X; Huang W; Wang Y; Zheng L; Xian X; Liu G
    Metabolism; 2018 Jun; 83():245-255. PubMed ID: 29526535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis.
    Mertens A; Verhamme P; Bielicki JK; Phillips MC; Quarck R; Verreth W; Stengel D; Ninio E; Navab M; Mackness B; Mackness M; Holvoet P
    Circulation; 2003 Apr; 107(12):1640-6. PubMed ID: 12668499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting ApoC3 Paradoxically Aggravates Atherosclerosis in Hamsters With Severe Refractory Hypercholesterolemia.
    Xu Y; Guo J; Zhang L; Miao G; Lai P; Zhang W; Liu L; Hou X; Wang Y; Huang W; Liu G; Gao M; Xian X
    Front Cardiovasc Med; 2022; 9():840358. PubMed ID: 35187136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lecithin:cholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice.
    Furbee JW; Sawyer JK; Parks JS
    J Biol Chem; 2002 Feb; 277(5):3511-9. PubMed ID: 11719520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma cholesteryl esters provided by lecithin:cholesterol acyltransferase and acyl-coenzyme a:cholesterol acyltransferase 2 have opposite atherosclerotic potential.
    Lee RG; Kelley KL; Sawyer JK; Farese RV; Parks JS; Rudel LL
    Circ Res; 2004 Nov; 95(10):998-1004. PubMed ID: 15486318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary-Induced Elevations of Triglyceride-Rich Lipoproteins Promote Atherosclerosis in the Low-Density Lipoprotein Receptor Knockout Syrian Golden Hamster.
    Lin X; Ma P; Yang C; Wang J; He K; Chen G; Huang W; Fan J; Xian X; Wang Y; Liu G
    Front Cardiovasc Med; 2021; 8():738060. PubMed ID: 34796210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The high-fat high-fructose hamster as an animal model for niacin's biological activities in humans.
    Connolly BA; O'Connell DP; Lamon-Fava S; LeBlanc DF; Kuang YL; Schaefer EJ; Coppage AL; Benedict CR; Kiritsy CP; Bachovchin WW
    Metabolism; 2013 Dec; 62(12):1840-9. PubMed ID: 24035454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice.
    Föger B; Chase M; Amar MJ; Vaisman BL; Shamburek RD; Paigen B; Fruchart-Najib J; Paiz JA; Koch CA; Hoyt RF; Brewer HB; Santamarina-Fojo S
    J Biol Chem; 1999 Dec; 274(52):36912-20. PubMed ID: 10601244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the components of reverse cholesterol transport in lecithin:cholesterol acyltransferase deficiency.
    Park MS; Kudchodkar BJ; Frohlich J; Pritchard H; Lacko AG
    Arch Biochem Biophys; 1987 Nov; 258(2):545-54. PubMed ID: 3674887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary Cholesterol Is Highly Associated with Severity of Hyperlipidemia and Atherosclerotic Lesions in Heterozygous LDLR-Deficient Hamsters.
    Wang J; He K; Yang C; Lin X; Zhang X; Wang Y; Liu G; Xian X
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31323736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased plasma cholesterol esterification by LCAT reduces diet-induced atherosclerosis in SR-BI knockout mice.
    Thacker SG; Rousset X; Esmail S; Zarzour A; Jin X; Collins HL; Sampson M; Stonik J; Demosky S; Malide DA; Freeman L; Vaisman BL; Kruth HS; Adelman SJ; Remaley AT
    J Lipid Res; 2015 Jul; 56(7):1282-95. PubMed ID: 25964513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro production of beta-very low density lipoproteins and small, dense low density lipoproteins in mildly hypertriglyceridemic plasma: role of activities of lecithin:cholester acyltransferase, cholesterylester transfer proteins and lipoprotein lipase.
    Chung BH; Segrest JP; Franklin F
    Atherosclerosis; 1998 Dec; 141(2):209-25. PubMed ID: 9862170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel LCAT (Lecithin:Cholesterol Acyltransferase) Activator DS-8190a Prevents the Progression of Plaque Accumulation in Atherosclerosis Models.
    Sasaki M; Delawary M; Sakurai H; Kobayashi H; Nakao N; Tsuru H; Fukushima Y; Honzumi S; Moriyama S; Wada N; Kaneko T; Yamada K; Terasaka N; Kubota K
    Arterioscler Thromb Vasc Biol; 2021 Jan; 41(1):360-376. PubMed ID: 33086872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.
    Lambert G; Sakai N; Vaisman BL; Neufeld EB; Marteyn B; Chan CC; Paigen B; Lupia E; Thomas A; Striker LJ; Blanchette-Mackie J; Csako G; Brady JN; Costello R; Striker GE; Remaley AT; Brewer HB; Santamarina-Fojo S
    J Biol Chem; 2001 May; 276(18):15090-8. PubMed ID: 11278414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myeloid cell-specific ATP-binding cassette transporter A1 deletion has minimal impact on atherogenesis in atherogenic diet-fed low-density lipoprotein receptor knockout mice.
    Bi X; Zhu X; Gao C; Shewale S; Cao Q; Liu M; Boudyguina E; Gebre AK; Wilson MD; Brown AL; Parks JS
    Arterioscler Thromb Vasc Biol; 2014 Sep; 34(9):1888-99. PubMed ID: 24833800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aortic cholesterol accumulation correlates with systemic inflammation but not hepatic and gonadal adipose tissue inflammation in low-density lipoprotein receptor null mice.
    Wang S; Miller B; Matthan NR; Goktas Z; Wu D; Reed DB; Yin X; Grammas P; Moustaid-Moussa N; Shen CL; Lichtenstein AH
    Nutr Res; 2013 Dec; 33(12):1072-82. PubMed ID: 24267047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of lecithin-cholesterol acyltransferase activity and low-density lipoprotein heterogeneity with atherosclerotic cardiovascular disease risk: a longitudinal pilot study.
    Yokoyama K; Tani S; Matsuo R; Matsumoto N
    BMC Cardiovasc Disord; 2018 Dec; 18(1):224. PubMed ID: 30518338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.