These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37923397)

  • 1. Direct Methane Removal from Air by Aerobic Methanotrophs.
    Lidstrom ME
    Cold Spring Harb Perspect Biol; 2024 Jul; 16(7):. PubMed ID: 37923397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A methanotrophic bacterium to enable methane removal for climate mitigation.
    He L; Groom JD; Wilson EH; Fernandez J; Konopka MC; Beck DAC; Lidstrom ME
    Proc Natl Acad Sci U S A; 2023 Aug; 120(35):e2310046120. PubMed ID: 37603746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilisation of low methane concentrations by methanotrophs.
    He L; Lidstrom ME
    Adv Microb Physiol; 2024; 85():57-96. PubMed ID: 39059823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive review on methane's dual role: effects in climate change and potential as a carbon-neutral energy source.
    Sobanaa M; Prathiviraj R; Selvin J; Prathaban M
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):10379-10394. PubMed ID: 37884720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Engineering application of aerobic methane oxidizing bacteria (methanotrophs): a review].
    Yan C; Mei J; Zhao Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Apr; 38(4):1322-1338. PubMed ID: 35470609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera".
    Rasigraf O; Kool DM; Jetten MS; Sinninghe Damsté JS; Ettwig KF
    Appl Environ Microbiol; 2014 Apr; 80(8):2451-60. PubMed ID: 24509918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular fossil record of elevated methane levels in late Pleistocene coastal waters.
    Hinrichs KU; Hmelo LR; Sylva SP
    Science; 2003 Feb; 299(5610):1214-7. PubMed ID: 12595688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters.
    Yoon S; Carey JN; Semrau JD
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):949-56. PubMed ID: 19352647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils].
    Zheng Y; Jia Z
    Wei Sheng Wu Xue Bao; 2013 Feb; 53(2):173-84. PubMed ID: 23627110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methanotrophy - Environmental, Industrial and Medical Applications.
    Semrau JD; DiSpirito AA
    Curr Issues Mol Biol; 2019; 33():1-22. PubMed ID: 31166183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria.
    Findlay M; Smoler DF; Fogel S; Mattes TE
    Environ Sci Technol; 2016 Apr; 50(7):3617-25. PubMed ID: 26918370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpected metabolic versatility among type II methanotrophs in the Alphaproteobacteria.
    Hakobyan A; Liesack W
    Biol Chem; 2020 Nov; 401(12):1469-1477. PubMed ID: 32769217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systems Metabolic Engineering of Methanotrophic Bacteria for Biological Conversion of Methane to Value-Added Compounds.
    Guo S; Nguyen DTN; Chau THT; Fei Q; Lee EY
    Adv Biochem Eng Biotechnol; 2022; 180():91-126. PubMed ID: 35246697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of farm soil, biochar, compost and weathered pine mulch to mitigate methane emissions.
    Syed R; Saggar S; Tate K; Rehm BH
    Appl Microbiol Biotechnol; 2016 Nov; 100(21):9365-9379. PubMed ID: 27557718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of Thermokarst Lakes in a Warming World.
    In 't Zandt MH; Liebner S; Welte CU
    Trends Microbiol; 2020 Sep; 28(9):769-779. PubMed ID: 32362540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms.
    Vanotti MB; Szogi AA; Vives CA
    Waste Manag; 2008; 28(4):759-66. PubMed ID: 18060761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane emissions of rice increased by elevated carbon dioxide and temperature.
    Allen LH; Albrecht SL; Colón-Guasp W; Covell SA; Baker JT; Pan D; Boote KJ
    J Environ Qual; 2003; 32(6):1978-91. PubMed ID: 14674519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.
    Tian H; Lu C; Ciais P; Michalak AM; Canadell JG; Saikawa E; Huntzinger DN; Gurney KR; Sitch S; Zhang B; Yang J; Bousquet P; Bruhwiler L; Chen G; Dlugokencky E; Friedlingstein P; Melillo J; Pan S; Poulter B; Prinn R; Saunois M; Schwalm CR; Wofsy SC
    Nature; 2016 Mar; 531(7593):225-8. PubMed ID: 26961656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.