These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37923746)

  • 1. Quantitative assessment of the universal thermopower in the Hubbard model.
    Wang WO; Ding JK; Huang EW; Moritz B; Devereaux TP
    Nat Commun; 2023 Nov; 14(1):7064. PubMed ID: 37923746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust charge-density-wave correlations in the electron-doped single-band Hubbard model.
    Mai P; Nichols NS; Karakuzu S; Bao F; Del Maestro A; Maier TA; Johnston S
    Nat Commun; 2023 May; 14(1):2889. PubMed ID: 37210389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous quantum criticality in the electron-doped cuprates.
    Mandal PR; Sarkar T; Greene RL
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5991-5994. PubMed ID: 30862739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical evidence of fluctuating stripes in the normal state of high-
    Huang EW; Mendl CB; Liu S; Johnston S; Jiang HC; Moritz B; Devereaux TP
    Science; 2017 Dec; 358(6367):1161-1164. PubMed ID: 29191902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biexciton Condensation in Electron-Hole-Doped Hubbard Bilayers: A Sign-Problem-Free Quantum Monte Carlo Study.
    Huang XX; Claassen M; Huang EW; Moritz B; Devereaux TP
    Phys Rev Lett; 2020 Feb; 124(7):077601. PubMed ID: 32142325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variational Monte Carlo study of stripes as a function of doping in thet-t'Hubbard model.
    Lechiara A; Marino V; Tocchio LF
    J Phys Condens Matter; 2024 Jul; 36(39):. PubMed ID: 38914109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traces of electron-phonon coupling in one-dimensional cuprates.
    Tang T; Moritz B; Peng C; Shen ZX; Devereaux TP
    Nat Commun; 2023 May; 14(1):3129. PubMed ID: 37253739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strange metallicity in the doped Hubbard model.
    Huang EW; Sheppard R; Moritz B; Devereaux TP
    Science; 2019 Nov; 366(6468):987-990. PubMed ID: 31753997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tangent Space Approach for Thermal Tensor Network Simulations of the 2D Hubbard Model.
    Li Q; Gao Y; He YY; Qi Y; Chen BB; Li W
    Phys Rev Lett; 2023 Jun; 130(22):226502. PubMed ID: 37327445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalously strong near-neighbor attraction in doped 1D cuprate chains.
    Chen Z; Wang Y; Rebec SN; Jia T; Hashimoto M; Lu D; Moritz B; Moore RG; Devereaux TP; Shen ZX
    Science; 2021 Sep; 373(6560):1235-1239. PubMed ID: 34516788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hidden Fermi-liquid Charge Transport in the Antiferromagnetic Phase of the Electron-Doped Cuprate Superconductors.
    Li Y; Tabis W; Yu G; Barišić N; Greven M
    Phys Rev Lett; 2016 Nov; 117(19):197001. PubMed ID: 27858438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vanishing nematic order beyond the pseudogap phase in overdoped cuprate superconductors.
    Gupta NK; McMahon C; Sutarto R; Shi T; Gong R; Wei HI; Shen KM; He F; Ma Q; Dragomir M; Gaulin BD; Hawthorn DG
    Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34413195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen hole content, charge-transfer gap, covalency, and cuprate superconductivity.
    Kowalski N; Dash SS; Sémon P; Sénéchal D; Tremblay AM
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34593641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doping dependence of the Neel temperature in mott-hubbard antiferromagnets: effect of vortices.
    Timm C; Bennemann KH
    Phys Rev Lett; 2000 May; 84(21):4994-7. PubMed ID: 10990850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum thermopower of metallic atomic-size contacts at room temperature.
    Evangeli C; Matt M; Rincón-García L; Pauly F; Nielaba P; Rubio-Bollinger G; Cuevas JC; Agraït N
    Nano Lett; 2015 Feb; 15(2):1006-11. PubMed ID: 25607343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin-Deep Aspect of Thermopower in Bi
    Lee C; Park T; Shim JH; Whangbo MH
    Acc Chem Res; 2022 Oct; 55(19):2811-2820. PubMed ID: 36129235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amelioration for the Sign Problem: An Adiabatic Quantum Monte Carlo Algorithm.
    Vaezi MS; Negari AR; Moharramipour A; Vaezi A
    Phys Rev Lett; 2021 Nov; 127(21):217003. PubMed ID: 34860094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum critical point at finite doping in the 2D Hubbard model: a dynamical cluster quantum Monte Carlo study.
    Vidhyadhiraja NS; Macridin A; Sen C; Jarrell M; Ma M
    Phys Rev Lett; 2009 May; 102(20):206407. PubMed ID: 19519050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Superconductivity: From Cuprates via Nickelates to Palladates.
    Kitatani M; Si L; Worm P; Tomczak JM; Arita R; Held K
    Phys Rev Lett; 2023 Apr; 130(16):166002. PubMed ID: 37154662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generic character of charge and spin density waves in superconducting cuprates.
    Lee S; Huang EW; Johnson TA; Guo X; Husain AA; Mitrano M; Lu K; Zakrzewski AV; de la Peña GA; Peng Y; Huang H; Lee SJ; Jang H; Lee JS; Joe YI; Doriese WB; Szypryt P; Swetz DS; Chi S; Aczel AA; MacDougall GJ; Kivelson SA; Fradkin E; Abbamonte P
    Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2119429119. PubMed ID: 35377791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.