These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 37923801)
1. Estimating optimum and base selection indices in plant and animal breeding programs by development new and simple SAS and R codes. Rahimi M; Debnath S Sci Rep; 2023 Nov; 13(1):18977. PubMed ID: 37923801 [TBL] [Abstract][Full Text] [Related]
2. A SAS code to estimate phenotypic-genotypic covariance and correlation matrices based on expected value of statistical designs to use in plant breeding. Rahimi M; Hernandez MV An Acad Bras Cienc; 2022; 94(1):e20200001. PubMed ID: 35476060 [TBL] [Abstract][Full Text] [Related]
3. Comparison between different selection indices in energy cane breeding. de Azeredo AA; Bhering LL; Brasileiro BP; Cruz CD; Silveira LC; Oliveira RA; Bespalhok Filho JC; Daros E Genet Mol Res; 2017 Mar; 16(1):. PubMed ID: 28301673 [TBL] [Abstract][Full Text] [Related]
4. Application of selection index calculations to determine selection strategies in genomic breeding programs. König S; Swalve HH J Dairy Sci; 2009 Oct; 92(10):5292-303. PubMed ID: 19762847 [TBL] [Abstract][Full Text] [Related]
5. Selection index using the graphical area applied to sugarcane breeding. Silva LA; Resende RT; Ferreira RA; Silva GN; Kist V; Barbosa MH; Nascimento M; Bhering LL Genet Mol Res; 2016 Sep; 15(3):. PubMed ID: 27706733 [TBL] [Abstract][Full Text] [Related]
6. Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits. Marulanda JJ; Mi X; Utz HF; Melchinger AE; Würschum T; Longin CFH Theor Appl Genet; 2021 Dec; 134(12):4025-4042. PubMed ID: 34618174 [TBL] [Abstract][Full Text] [Related]
7. Predicting segregation of multiple fruit-quality traits by using accumulated phenotypic records in citrus breeding. Imai A; Kuniga T; Yoshioka T; Nonaka K; Mitani N; Fukamachi H; Hiehata N; Yamamoto M; Hayashi T PLoS One; 2018; 13(8):e0202341. PubMed ID: 30114283 [TBL] [Abstract][Full Text] [Related]
8. Genetic divergence and truncation and simultaneous selection in inbred families (S Ambrósio M; Daher RF; Silva Santana JG; Leite CL; Duarte JVB; Vidal AKF; Nascimento MR; de Souza AG; Freitas RS; Stida WF; Farias JEC; Santos RM Sci Rep; 2024 Aug; 14(1):17850. PubMed ID: 39090204 [TBL] [Abstract][Full Text] [Related]
9. Combining ability, heritability and genotypic relations of different physiological traits in cacao hybrids. Pereira AS; de Almeida AF; Branco MCDS; Costa MGC; Ahnert D PLoS One; 2017; 12(6):e0178790. PubMed ID: 28628670 [TBL] [Abstract][Full Text] [Related]
10. Combined Multistage Linear Genomic Selection Indices To Predict the Net Genetic Merit in Plant Breeding. Cerón-Rojas JJ; Crossa J G3 (Bethesda); 2020 Jun; 10(6):2087-2101. PubMed ID: 32312840 [TBL] [Abstract][Full Text] [Related]
11. Genetic Gain Increases by Applying the Usefulness Criterion with Improved Variance Prediction in Selection of Crosses. Lehermeier C; Teyssèdre S; Schön CC Genetics; 2017 Dec; 207(4):1651-1661. PubMed ID: 29038144 [TBL] [Abstract][Full Text] [Related]
12. Invited review: The future of selection decisions and breeding programs: What are we breeding for, and who decides? Cole JB; Dürr JW; Nicolazzi EL J Dairy Sci; 2021 May; 104(5):5111-5124. PubMed ID: 33714581 [TBL] [Abstract][Full Text] [Related]
13. Genetic potential of common bean progenies obtained by different breeding methods evaluated in various environments. Pontes Júnior VA; Melo PG; Pereira HS; Melo LC Genet Mol Res; 2016 Sep; 15(3):. PubMed ID: 27706698 [TBL] [Abstract][Full Text] [Related]
14. Determination of the optimal number of markers and individuals in a training population necessary for maximum prediction accuracy in F Peixoto LA; Bhering LL; Cruz CD Genet Mol Res; 2016 Nov; 15(4):. PubMed ID: 27886337 [TBL] [Abstract][Full Text] [Related]
15. Imputation of non-genotyped F1 dams to improve genetic gain in swine crossbreeding programs. See GM; Fix JS; Schwab CR; Spangler ML J Anim Sci; 2022 May; 100(5):. PubMed ID: 35451025 [TBL] [Abstract][Full Text] [Related]
16. Predicted accuracy of and response to genomic selection for new traits in dairy cattle. Calus MP; de Haas Y; Pszczola M; Veerkamp RF Animal; 2013 Feb; 7(2):183-91. PubMed ID: 23031684 [TBL] [Abstract][Full Text] [Related]
17. Estimating genetic variability among diverse lentil collections through novel multivariate techniques. Hussain SA; Iqbal MS; Akbar M; Arshad N; Munir S; Ali MA; Masood H; Ahmad T; Shaheen N; Tahir A; Khan MA; Ilyas MK; Ghafoor A PLoS One; 2022; 17(6):e0269177. PubMed ID: 35771871 [TBL] [Abstract][Full Text] [Related]
18. Exploitation of data from breeding programs supports rapid implementation of genomic selection for key agronomic traits in perennial ryegrass. Pembleton LW; Inch C; Baillie RC; Drayton MC; Thakur P; Ogaji YO; Spangenberg GC; Forster JW; Daetwyler HD; Cogan NOI Theor Appl Genet; 2018 Sep; 131(9):1891-1902. PubMed ID: 29860624 [TBL] [Abstract][Full Text] [Related]
19. Integration of genomic information into sport horse breeding programs for optimization of accuracy of selection. Haberland AM; König von Borstel U; Simianer H; König S Animal; 2012 Sep; 6(9):1369-76. PubMed ID: 23031511 [TBL] [Abstract][Full Text] [Related]
20. A simulation study comparing advanced marker-assisted selection with genomic selection in tree breeding programs. Degen B; Müller NA G3 (Bethesda); 2023 Sep; 13(10):. PubMed ID: 37494068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]