BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37923814)

  • 1. Quantifying the Importance of Active Muscle Repositioning a Finite Element Neck Model in Flexion Using Kinematic, Kinetic, and Tissue-Level Responses.
    Hadagali P; Fischer SL; Callaghan JP; Cronin DS
    Ann Biomed Eng; 2024 Mar; 52(3):510-525. PubMed ID: 37923814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of passive muscle, skin, and adipose tissue mechanical properties on head and neck response in rear impacts assessed with a finite element model.
    Gierczycka D; Rycman A; Cronin D
    Traffic Inj Prev; 2021; 22(5):407-412. PubMed ID: 34037475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Out-of-Position Rear Impact Tissue-Level Investigation Using Detailed Finite Element Neck Model.
    Shateri H; Cronin DS
    Traffic Inj Prev; 2015; 16(7):698-708. PubMed ID: 25664486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: A combined musculoskeletal and finite element simulation study.
    Liu T; Khalaf K; Adeeb S; El-Rich M
    J Biomech; 2019 Jan; 82():116-123. PubMed ID: 30389260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of control strategies for the cervical muscles of an average female head-neck finite element model.
    Putra IPA; Iraeus J; Thomson R; Svensson MY; Linder A; Sato F
    Traffic Inj Prev; 2019; 20(sup2):S116-S122. PubMed ID: 31617760
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of muscle activation on neck response.
    Brolin K; Halldin P; Leijonhufvud I
    Traffic Inj Prev; 2005 Mar; 6(1):67-76. PubMed ID: 15823878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cervical spine joint loading with neck flexion.
    Barrett JM; McKinnon C; Callaghan JP
    Ergonomics; 2020 Jan; 63(1):101-108. PubMed ID: 31594480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical effect of age-related structural changes on cervical intervertebral disc: A finite element study.
    Zeng HZ; Zheng LD; Xu ML; Zhu SJ; Zhou L; Candito A; Wu T; Zhu R; Chen Y
    Proc Inst Mech Eng H; 2022 Oct; 236(10):1541-1551. PubMed ID: 36239382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of the cervical capsular joint cartilage geometry on head and facet joint kinematics assessed in a Finite element neck model.
    Corrales MA; Cronin DS
    J Biomech; 2021 Jun; 123():110528. PubMed ID: 34082236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact.
    Cronin DS
    J Mech Behav Biomed Mater; 2014 May; 33():55-66. PubMed ID: 23466282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of muscle activations for biofidelic pediatric neck response in computational models.
    Dibb AT; Cox CA; Nightingale RW; Luck JF; Cutcliffe HC; Myers BS; Arbogast KB; Seacrist T; Bass CR
    Traffic Inj Prev; 2013; 14 Suppl():S116-27. PubMed ID: 23905513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forces and moments in cervical spinal column segments in frontal impacts using finite element modeling and human cadaver tests.
    Meyer F; Humm J; Purushothaman Y; Willinger R; Pintar FA; Yoganandan N
    J Mech Behav Biomed Mater; 2019 Feb; 90():681-688. PubMed ID: 30529569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the Biofidelity of an Upper Cervical Spine Finite Element Model Within the Physiologic Range of Motion and Its Effect on the Full Ligamentous Neck Model Response.
    Hadagali P; Cronin DS
    J Biomech Eng; 2023 Jan; 145(1):. PubMed ID: 35864785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study.
    Cai XY; YuChi CX; Du CF; Mo ZJ
    Med Biol Eng Comput; 2020 Aug; 58(8):1695-1705. PubMed ID: 32462554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative cervical spine injury responses in whiplash loading with a numerical method of natural neural reflex consideration.
    Liang Z; Mo F; Zheng Z; Li Y; Tian Y; Jiang X; Liu T
    Comput Methods Programs Biomed; 2022 Jun; 219():106761. PubMed ID: 35344767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Load-sharing in the lumbosacral spine in neutral standing & flexed postures - A combined finite element and inverse static study.
    Liu T; Khalaf K; Naserkhaki S; El-Rich M
    J Biomech; 2018 Mar; 70():43-50. PubMed ID: 29153706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cervical Spine Muscle-Tendon Unit Length Differences Between Neutral and Forward Head Postures: Biomechanical Study Using Human Cadaveric Specimens.
    Khayatzadeh S; Kalmanson OA; Schuit D; Havey RM; Voronov LI; Ghanayem AJ; Patwardhan AG
    Phys Ther; 2017 Jul; 97(7):756-766. PubMed ID: 28444241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the importance of retaining stresses and strains in repositioning computational biomechanical models of the cervical spine.
    Boakye-Yiadom S; Cronin DS
    Int J Numer Method Biomed Eng; 2018 Jan; 34(1):. PubMed ID: 28570783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo loads in the lumbar L3-4 disc during a weight lifting extension.
    Wang S; Park WM; Kim YH; Cha T; Wood K; Li G
    Clin Biomech (Bristol, Avon); 2014 Feb; 29(2):155-60. PubMed ID: 24345591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel coupled musculoskeletal finite element model of the spine - Critical evaluation of trunk models in some tasks.
    Rajaee MA; Arjmand N; Shirazi-Adl A
    J Biomech; 2021 Apr; 119():110331. PubMed ID: 33631665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.